PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

FSO system performance analysis based on novel Gamma–Chi-square irradiance PDF model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to provide a novel analytically traceable free space optics (FSO) channel model for describing turbulence based irradiance fluctuations, following basic scintillation theory principles, we have derived closed-form expression for probability density function (PDF) of a new statistical Gamma–Chi-square model. Further, capitalizing on provided model, error performances of FSO system over on-off keying (OOK) transmission scheme both in the presence of atmospheric turbulence and misalignment fading (pointing error) is investigated. For both cases, the average bit error rate (ABER) at the receiving side of the system is determined in an analytically closed form. The results are graphically presented in order to analyze the impact of different levels of turbulence, as well as other relevant parameters, on the quality of the received signal in the OOK modulated FSO system.
Czasopismo
Rocznik
Strony
335--348
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Faculty of Technical Sciences, University of Priština – Kosovska Mitrovica, Knjaza Miloša 7, 38220 Kosovska Mitrovica, Serbia
  • Faculty of Technical Sciences, University of Priština – Kosovska Mitrovica, Knjaza Miloša 7, 38220 Kosovska Mitrovica, Serbia
  • Faculty of Sciences, University of Priština – Kosovska Mitrovica, Faculty of Sciences, Lole Ribara 29, 38220 Kosovska Mitrovica, Serbia
  • Higher Technical Professional School in Zvečan, Nušićeva 6, 38227 Zvečan, Serbia
  • Academy of Criminalistics and Police Studies, University of Criminal Investigation and Police Studies, Cara Dušana 196, 11080 Zemun, Serbia
Bibliografia
  • [1] CHURNSIDE J.H., CLIFFORD S.F., Log-normal Rician probability-density function of optical scintillations in the turbulent atmosphere, Journal of the Optical Society of America A 4(10), 1987, pp. 1923–1930, DOI: 10.1364/JOSAA.4.001923.
  • [2] JAKEMAN E., PUSEY P., Significance of K distributions in scattering experiments, Physical Review Letters 40(9), 1978, pp. 546–550, DOI: 10.1103/PhysRevLett.40.546.
  • [3] ANDREWS L., PHILLIPS R.L., Mathematical genesis of the I-K distribution for random optical fields, Journal of the Optical Society of America A 3(11), 1986, pp. 1912–1919, DOI: 10.1364/JOSAA.3.001912.
  • [4] AL-HABASH A., ANDREWS L.C., PHILLIPS R.L., Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media, Optical Engineering 40(8), 2001, pp. 1554–1562, DOI: 10.1117/1.1386641.
  • [5] JURADO-NAVAS A., GARRIDO-BALSELLS J.M., PARIS J.F., PUERTA-NOTARIO A., A unifying statistical model for atmospheric optical scintillation, arXiv preprint arXiv:1102.1915, 2011, DOI: 10.5772/25097.
  • [6] CHATZIDIAMANTIS N.D., SANDALIDIS H.G., KARAGIANNIDIS G.K., KOTSOPOULOS S.A., MATTHAIOU M., New results on turbulence modeling for free-space optical systems, Proceedings of 2010 17th IEEE International Conference on Telecommunications (ICT), April 4–7, 2010, Doha, Qatar, pp. 487–492, DOI: 10.1109/ICTEL.2010.5478872.
  • [7] KASHANI M.A., UYSAL M., KAVEHRAD M., A novel statistical channel model for turbulence-induced fading in free-space optical systems, Journal of Lightwave Technology 33(11), 2015, pp. 2303–2312, DOI: 10.1109/JLT.2015.2410695.
  • [8] BITHAS P.S., KANATAS A.G., DA COSTA D.B., UPADHYAY P.K., DIAS U.S., On the double-generalized Gamma statistics and their application to the performance analysis of V2V communications, IEEE Transactions on Communications 66(1), 2018, pp. 448–460, DOI: 10.1109/TCOMM.2017.2757466.
  • [9] CHURNSIDE J.H., FREHLICH R.G., Experimental evaluation of log-normally modulated Rician and IK models of optical scintillation in the atmosphere, Journal of the Optical Society of America A 6(11), 1989, pp. 1760–1766, DOI: 10.1364/JOSAA.6.001760.
  • [10] YANG F., CHENG J., Coherent free-space optical communications in lognormal–Rician turbulence, IEEE Communications Letters 16(11), 2012, pp. 1872–1875, DOI: 10.1109/LCOMM.2012.100812.121341.
  • [11] BELMONTE A., KAHN J.M., Performance of synchronous optical receivers using atmospheric compensation techniques, Optics Express 16(18), 2008, pp. 14151–14162, DOI: 10.1364/OE.16.014151.
  • [12] ZHOU H., XIE W., ZHANG L., BAI Y., WEI W., DONG Y., Performance analysis of FSO coherent BPSK systems over Rician turbulence channel with pointing errors, Optics Express 27(19), 2019, pp. 27062–27075, DOI: 10.1364/OE.27.027062.
  • [13] AGHAJANZADEH S.M., UYSAL M., Diversity-multiplexing trade-off in coherent free-space optical systems with multiple receivers, Journal of Optical Communications and Networking 2(12), 2010, pp. 1087–1094, DOI: 10.1364/JOCN.2.001087.
  • [14] PANIĆ S., MILOŠEVIĆ H., PRLINČEVIĆ B., Performance analysis of FSO transmission of double watermarked image over the double Rician turbulence channel, Proceedings of First West Asian Colloquium on Optical Wireless Communications (WACOWC), April 25, 2018, Isfehan, Iran.
  • [15] PANIĆ S., MILOŠEVIĆ H., VASIĆ S, MILENKOVIĆ V., Dynamical characteristics of the FSO transmission capacity in the presence of Rician turbulence, Proceedings of 2018 International Conference on Information and Communications Technology (ICOIACT), March 6–7, 2018, Jogyakarta, Indonesia.
  • [16] PRLINČEVIĆ B.P., PANIĆ S.R., SPALEVIĆ P.C., MIŠIĆ M.A., AMNIESI A., STANOJEVIĆ V., On the transmission of double watermarked image over Rician FSO channel, Elektronika ir Elektrotechnika 22(3), 2016, pp. 83–88, DOI: 10.5755/j01.eie.22.3.15320.
  • [17] SAXENA P., MATHUR A., BHATNAGAR M.R., BER performance of an optically pre-amplified FSO system under turbulence and pointing errors with ASE noise, Journal of Optical Communications and Networking 9(6), 2017, pp. 498–510, DOI: 10.1364/jocn.9.000498.
  • [18] ELSAYED E.E., YOUSIF B.B., Performance enhancement of the average spectral efficiency using an aperture averaging and spatial-coherence diversity based on the modified-PPM modulation for MISO FSO links, Optics Communications 463, 2020, article 125463, DOI: 10.1016/j.optcom.2020.125463.
  • [19] SMILIĆ M., PERIĆ Z., MILIĆ D., MARKOVIĆ A., SAVIĆ M., Influence of zero and non-zero boresight pointing errors on bit-error rate free-space optic transmission over Málaga atmospheric channel, Optica Applicata 48(2), 2018, pp. 179–189, DOI: 10.5277/oa180202.
  • [20] ANSARI I.S., ALOUINI M.S., CHENG J., Ergodic capacity analysis of free-space optical links with nonzero boresight pointing errors, IEEE Transactions on Wireless Communications 14(8), 2015, pp. 4248–4264, DOI: 10.1109/TWC.2015.2418285.
  • [21] SANDALIDIS H.G., TSIFTSIS T.A., KARAGIANNIDIS G.K., UYSAL M., BER performance of FSO links over strong atmospheric turbulence channels with pointing errors, IEEE Communications Letters 12(1), 2008, pp. 44–46, DOI: 10.1109/LCOMM.2008.071408.
  • [22] SANDALIDIS H.G., TSIFTSIS T.A., KARAGIANNIDIS G.K., Optical wireless communications with heterodyne detection over turbulence channels with pointing errors, Journal of Lightwave Technology 27(20), 2009, pp. 4440–4445, DOI: 10.1109/JLT.2009.2024169.
  • [23] WANG Z., ZHONG W.-D., FU S., LIN C., Performance comparison of different modulation formats over free-space optical (FSO) turbulence links with space diversity reception technique, IEEE Photonics Journal 1(6), 2009, pp. 277–285, DOI: 10.1109/JPHOT.2009.2039015.
  • [24] TSIFTSIS T.A., SANDALIDIS H.G., KARAGIANNIDIS G.K., UYSAL M., Optical wireless links with spatial diversity over strong atmospheric turbulence channels, IEEE Transactions on Wireless Communications 8(2), 2009, pp. 951–957, DOI: 10.1109/TWC.2009.071318.
  • [25] MILOŠEVIĆ N.D., PETKOVIĆ M.I., DJORDJEVIĆ G.T., Average BER of SIM-DPSK FSO system with multiple receivers over Μ-distributed atmospheric channel with pointing errors, IEEE Photonics Journal 9(4), 2017, article 6601210, DOI: 10.1109/JPHOT.2017.2710320.
  • [26] STÜBER G.L., Principles of Mobile Communication, 2nd Edition, Kluwer Academic Publishers, 2002.
  • [27] GRADSHTEYN I.S., RYZHIK I.M., Table of Integrals, Series, and Products, 7th Ed., Elsevier Academic Press, 2007.
  • [28] DJORDJEVIĆ G.T., PETKOVIĆ M.I., SPASIĆ M., ANTIĆ D.S., Outage capacity of FSO link with pointing errors and link blockage, Optics Express 24(1), 2016, pp. 219–230, DOI: 10.1364/oe.24.000219.
  • [29] FARID A.A., HRANILOVIĆ S., Outage capacity optimization for free-space optical links with pointing errors, Journal of Lightwave Technology 25(7), 2007, pp. 1702–1710, DOI: 10.1109/JLT.2007.899174.
  • [30] The Wolfarm Functions Site: MeijerG functions, http://functions.wolfram.com/PDF/MeijerG.pdf (accessed May 2020).
  • [31] SAWHIL P.B., Effect of atmospheric turbulence and pointing error on OOK in free space optics, International Journal of Engineering Trends and Technology (IJETT) 59(3), 2018, pp. 122–126, DOI: 10.14445/22315381/IJETT-V59P221.
  • [32] ZHANG H., LI H., HAO C., Performance analysis for BPSK, DPSK and OOK-based FSO system in atmospheric turbulence conditions, International Journal of Simulation – Systems, Science & Technology 17(36), 2016, article 37.1, DOI: 10.5013/ IJSSST.a.17.36.37.
  • [33] The Wolfarm Functions Site: Erfc functions, http://functions.wolfram.com/PDF/Erfc.pdf (accessed May 2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7df64c4f-0a64-4b0c-96b3-1ca794e567b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.