PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Alumina-silica-titania adsorbent for hazardous azo and phtalocyanine dyes removal from textile baths and wastewaters – the impact of ionic surfactants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two aspects of interfacial phenomena were discussed in the manuscript. The first one concerns the adsorptive removal of two azo dyes such as C.I. Acid Yellow 219 (AY219) and C.I. Direct Yellow 142 (DY142) as well as the phtalocyanine C.I. Reactive Blue 21 (RB21) on the alumina silicatitania oxide (4% wt. Al2O3 – 8% wt. SiO2 – 88% wt. TiO2; AST88) in the ionic surfactants presence. The second one deals with the determination of interaction mechanism in the dyes-AST88, dyes-surfactant-AST88 systems using the data obtained from the surface charge density and zeta potential studies. The sodium dodecyl sulphate (SDS) with anionic character and hexadecyltrimethylammonium bromide (CTAB) with cationic ones were used. The adsorption capacities of 205.2 mg/g for AY219, 36.5 mg/g for RB21 and 18 mg/g for DY142. The potentiometric titration and Doppler laser electrophoresis methods enable determination of sign and magnitude of charge located in both the surface and the slipping plane layers around the solid particles. The structure of electrical double layer was determined in the AST88 systems without as well as with dyes and with mixed dye + surfactant adsorbates.
Rocznik
Strony
178--193
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr., wz.
Twórcy
  • Maria Curie-Sklodowska University in Lublin, Faculty of Chemistry, Institute of Chemical Sciences, Department of Radiochemistry and Environmental Chemistry, M. Curie-Sklodowska Sq. 2, 20-031 Lublin, Poland
  • Maria Curie-Sklodowska University in Lublin, Faculty of Chemistry, Institute of Chemical Sciences, Department of Inorganic Chemistry, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
  • Maria Curie-Sklodowska University in Lublin, Faculty of Chemistry, Institute of Chemical Sciences, Department of Inorganic Chemistry, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
  • Maria Curie-Sklodowska University in Lublin, Faculty of Chemistry, Institute of Chemical Sciences, Department of Radiochemistry and Environmental Chemistry, M. Curie-Sklodowska Sq. 2, 20-031 Lublin, Poland
autor
  • Maria Curie-Sklodowska University in Lublin, Faculty of Chemistry, Institute of Chemical Sciences, Department of Radiochemistry and Environmental Chemistry, M. Curie-Sklodowska Sq. 2, 20-031 Lublin, Poland
  • National Academy of Science of Ukraine, O. O. Chuiko Institute of Surface Chemistry, 17 General Naumov Str., 03164 Kiev, Ukraine
  • National Academy of Science of Ukraine, O. O. Chuiko Institute of Surface Chemistry, 17 General Naumov Str., 03164 Kiev, Ukraine
Bibliografia
  • AFKHAMI, A., SABER-TEHRANI, M., BAGHERI, H., 2010. Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2,4 dinitrophenylhydrazine. J. Hazard. Mater. 181, 836-844.
  • ANBIA, M., SALEHI, S., 2012. Removal of acid dyes from aqueous media by adsorption onto amino-functionalized nanoporous silica SBA-3. Dyes Pigments. 94, 1-9. CALVET, E., PRAT. ,H., 1963. Recent Progress in Microcalorimetry, Pergamon.
  • CHOWDHURY, AL-N., RAHIM, A., FERDOSI, Y. J., AZAM, M. S., MUFAZZAL HOSSAIN, M., 2010. Cobalt nickel mixed oxide surface: a promising adsorbent for the removal of PR dye from water. Appl. Surf. Sci. 256, 3718-3724.
  • CRINI, G., 2016. Non-conventional low-cost adsorbents for dye removal: a review. Bioresource Technol. 97, 1061-1085.
  • GONCHARUK, O. V., 2015. The heat of immersion of modified silica in polar and nonpolar liquids. J. Therm. Anal. Calorim. 120, 1365–1373.
  • GREGG, S. J., SING, K. S. W., 1982. Adsorption, Surface Area and Porosity. Academic Press, London.
  • GUN’KO, V. M., 2014. Composite materials: Textural characteristics. Appl Surf Sci. 307, 444–454.
  • GUN’KO, V. M., NYCHIPORUK, Y. M., ZARKO V. I., et al, 2007. Relationships between surface compositions and properties of surfaces of mixed fumed oxides. Appl. Surf. Sci. 253, 3215–3230.
  • GUN’KO, V. M., TUROV, V. I., ZARKO, V. I., GONCHARUK, O. V., PAHKLOV, E. M., SKUBISZEWSKA-ZIĘBA, J., BLITZ, J. P., 2016. Interfacial phenomena at a surface of individual and complex fumed nanooxides. Adv. Colloid Interface Sci. 235, 108–189.
  • GUN’KO, V. M., PAKHLOV, E. M., SKUBISZEWSKA-ZIĘBA, J., BLITZ, J. P., 2017. Infrared spectroscopy as a tool for textural and structural characterization of individual and complex fumed oxides. Vibrat. Spectrosc. 88, 56-62.
  • HUNTER, R. J., 1981. Zeta potential in colloid science. Academic Press, New York.
  • JANUSZ, W., 1994. Electrical double layer at the metal oxide/electrolyte interface in interfacial forces and fields: theory and applications. In: M. Decker (Ed.), Surfactant Science, vol. 85, chapter 4, New York. JCPDS Database, 2001. International Center for Diffraction Data, PA.
  • KHAN, T. A., SINGH, V. V., KUMAR, D., 2004. Removal of some basic dyes from artificial textile wastewater by adsorption on Akash Kinari coal. J. Sci. Ind. Res. India. 63, 355-364.
  • KOSMULSKI, M., 2001. Chemical properties of material surfaces. Marcel Decker, New York.
  • KOSMULSKI, M., 2016. Isoelectric points and points of zero charge of metal (hydr)oxides: 50 years after Parks' review. Adv. Colloid Interfac. Sci. 238, 1-61.
  • KYZIOL-KOMOSINSKA, J., ROSIK-DULEWSKA, C., DZIENISZEWSKA, A., PAJAK, M., 2011. Compost as biosorbent for removal of acid dyes from the wastewater generated by the textile industry. Arch. Environ. Prot. 37, 3-14.
  • LIU, X. J., ZENG, H. Y., XU, S., CHEN, C. R., ZHANG, Z., DU, J. Z., 2016. Metal oxides as dual-functional adsorbents/catalysts for Cu2+/Cr(VI) adsorption and methyl orange oxidation catalysis. J. Taiwan Inst. Chem. E. 60, 414-422.
  • MAHAPATRA, A., MISHRA, B. G., HOTA, G., 2013. Adsorptive removal of Congo red dye from wastewater by mixed iron oxide–alumina nanocomposites. Ceram. Int. 39, 5443-5451.
  • MAJEWSKA-NOWAK, K., 1986. Usuwanie barwników ze ścieków przemysłowych. Ochrona środowiska. 488/4, 17-22.
  • MIKUSHINA, Y. V., SHISHMAKOV, A. B., MATSKEVICH, V. V., ZHURAVLEV, N. A., KORYAKOVA, O. V., KHARCHUK, V. G., PETROV, L. A., 2008. TiO2-SiO2 binary xerogels: synthesis and characterization. Russ. J. Inorg. Chem+. 53. 1557-1560.
  • OHSHIMA, H., 1994. A simple expression for Henry’s function for the retardation effect in electrophoresis of spherical colloidal particles. J. Colloid Interf. Sci. 168, 269-271.
  • PABON, E., RETUERT, J., QUIJADA, R., ZARATE, A., 2004. TiO2-SiO2 mixed oxides prepared by a combined sol-gel and polimer inclusion method. Micropor. Mesopor. Mat. 67, 195-203.
  • PHAN, T. N. T., BACQUET, M., MORCELLET, M., 2000. Synthesis and characterization of silica gels functionalized with monochlorotriazinyl ß-cyclodextrin and their sorption capacities towards organic compounds. J. Incl. Phenom. Macro. 38, 345-359.
  • REHBINDER., P. A., 1979. Surface phenomena in disperse systems. Physicalchemical mechanics. Moscow: Nauka Press (in Russian).
  • SKWAREK, E., JANUSZ, W., STERNIK, D., 2014. Adsorption of citrate ions on hydroxyapatite synthetized by various methods. J. Radioanal. Nucl. Chem. 299, 2027–2036.
  • SOLECKA, M., LEDAKOWICZ, S., 2005. Biologiczne procesy oczyszczania barwnych ścieków włókienniczych. Biotechnologia. 5, 103-124.
  • SZEWCZUK-KARPISZ, K., FIJAŁKOWSKA, G., SKIC, K., WIŚNIEWSKA, M., BOGUTA, P., KRASUCKA, P., SOKOŁOWSKA, Z., 2018. Electrical double layer at the gibbsite/anionic polyacrylamide/supporting electrolyte interface – adsorption, spectroscopy and electrokinetic studies. J. Molec. Liq. 261, 439-445.
  • SZEWCZUK-KARPISZ, K., KRASUCKA, P., BOGUTA, P., SKIC, K., SOKOŁOWSKA, Z., FIJAŁKOWSKA, G., WIŚNIEWSKA, M., 2019. Anionic polyacrylamide efficiency in goethite removal from aqueous solutions. Int. J. Env. Sci. Tech. 16, 3145-3154.
  • VHAHANGWELE, M., MUGERA, G. W., MUGERA, J., 2015. The potential of ball-milled South African bentonite clay for attenuation of heavy metals from acidic wastewaters: simultaneous sorption of Co2+, Cu2+, Ni2+, Pb2+, and Zn2+ ions. J. Environ. Chem. Eng. 3, 2416-2425.
  • WANG, X., GUO, Y., YANG, L., HAN, M., ZHAO, J., CHENG, X., 2012. Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment. J. Environ. Anal. Toxicol. 2, 1000154.
  • WAWRZKIEWICZ, M., 2014. Anion-exchange resins for C.I. Direct Blue 71 removal from aqueous solutions and wastewaters: effects of basicity and matrix composition and structure. Ind. Eng. Chem. Res. 53, 11838-11849.
  • WAWRZKIEWICZ, M., POLSKA-ADACH, E., HUBICKI, Z., 2019. Application of titania based adsorbent for removal of acid, reactive and direct dyes from textile effluents. Adsorption. 25, 621-630.
  • WAWRZKIEWICZ, M., POLSKA-ADACH, E., WIŚNIEWSKA, M., FIJAŁKOWSKA, G., GONCHARUK, O., 2019. Adsorptive removal of C.I. Direct Yellow 142 form textile baths using nanosized silica-titania oxide. Eur. Phys. J. Plus. 134, 108-117.
  • WAWRZKIEWICZ, M., WIŚNIEWSKA, M., WOŁOWICZ, A., GUN’KO, V. M., ZARKO, V. I., 2017. Mixed silicaalumina oxide as sorbent for dyes and metal ions removal from aqueous solutions and wastewaters. Micropor. Mesopor. Mat. 250, 128-147.
  • WIŚNIEWSKA, M., 2007. Temperature study of nonionic polymers adsorption at the alumina-solution interface. J. Am. Ceram. Soc. 90, 3608-3614.
  • WIŚNIEWSKA, M., 2010. Studies of temperature influence on adsorption behavior of nonionic polymers at the zirconia - solution interface. J. Therm. Anal. Calorim. 101, 743-751.
  • WIŚNIEWSKA, M., WAWRZKIEWICZ, M., POLSKA-ADACH, E., FIJAŁKOWSKA, G., GONCHARUK, O., 2018. Nanosized silica-titanium oxide as potential adsorbent for C.I. Acid Yellow 219 dye removal from textile baths and wastewater. Appl. Nanosci. 8, 867-876.
  • WOŁOWICZ, A., HUBICKI, Z., 2016. Carbon-based adsorber resin Lewatit AF 5 applicability in metal ion recovery. Micropor. Mesopor. Mat. 224, 400-414.
  • YAGUB, M. T., SEN, T. K., AFROZE, A., ANG, H. M., 2014. Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interface Sci. 209, 172-184.
  • ZENG, M., WU, W., FANG, J., LI, S., ZHOU, Z., 2019. Fabrication of chitosan/alginate porous sponges as adsorbents for the removal of acid dyes from aqueous solution. J. Mater. Sci. 54, 9995-10008
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7df3d3dd-cbd6-43a9-80bb-126657897c3b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.