PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quasi-static and dynamic characterization of ultrafine-grained 2017A-T4 aluminium alloy processed by accumulative roll bonding PDF

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, novel composite strips based on 2017A-T4 aluminium alloy (Al-Cu-Mg) produced by accumulative roll bonding (ARB) were developed. The microstructure and mechanical properties of the ultrafine-grained sheets under quasistatic and dynamic loadings were investigated. The initial microstructure characterization with an Optical Microscope and a Scanning Electron Microscope indicated that the ARBed sheets formed a compact material with the homogeneous and identical thickness for the individual bonded layers. Besides, the presence of precipitates was identified in all the processed strips with diverse sizes, quantities and distribution. Moreover, from Electron Back Scatter Diffraction, the microstructure was noticeably refined with increasing theARBcycles to reach 1.7 mof the grain size at the fifth cycle. The microhardness measurement and the tensile test were carried out for both natural ageing and ARBed specimens. Accordingly, the tensile stress acts on the individual layers rather than the entire sample that conduct to a reduction in the overall properties for the ARBed strips. Furthermore, a stabilization in the mechanical properties for the three first ARB cycles was noted, whereas, the domination of the dynamic recrystallization was responsible for a significant drop after the fourth cycle which is considered as the transition state. The characteristics of the compression deformation were examined under dynamic and quasi-static loadings conditions by using the Split–Hopkinson Pressure Bar system and the universal testing machine, respectively. The strain hardening behaviour was investigated using the Hollomon analysis. It was found that the thermal softening played a crucial role when compared to the strain hardening for all the studied strips. Moreover, the strain rate under the dynamic loading has a minor effect on the stress flow of the ARBed sheets compared to the as-received material.
Rocznik
Strony
339--363
Opis fizyczny
Bibliogr. 49 poz., rys. kolor., wykr.
Twórcy
autor
  • Laboratoire Génie des Matériaux, École Militaire Polytechnique, BP17 Bordj El-Bahri, 16046 Algiers, Algeria
autor
  • Laboratoire Génie des Matériaux, École Militaire Polytechnique, BP17 Bordj El-Bahri, 16046 Algiers, Algeria,
autor
  • Laboratoire Génie des Matériaux, École Militaire Polytechnique, BP17 Bordj El-Bahri, 16046 Algiers, Algeria,
autor
  • Laboratoire Génie des Matériaux, École Militaire Polytechnique, BP17 Bordj El-Bahri, 16046 Algiers, Algeria,
autor
  • Laboratoire Dynamique des Systèmes Mécaniques, École Militaire Polytechnique, BP17 Bordj El-Bahri, 16046 Algiers, Algeria
autor
  • Laboratoire Génie des Matériaux, École Militaire Polytechnique, BP17 Bordj El-Bahri, 16046 Algiers, Algeria,
  • LSGM Département de Métallurgie, Ecole Nationale Polytechnique, 10 Avenue Hassen Badi, BP 182 El Harrach 16200, Alger, Algérie
autor
  • Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay, 91405 Orsay, France
Bibliografia
  • 1. S. Lee, P.B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, N.K. Tsenev, R.Z. Valiev, T.G. Langdon, Developing superplastic properties in an aluminium Allom through severe plastic deformation, Materials Science and Engineering A, 272, 63–72, 1999, https://doi.org/10.1016/S0921-5093(99)00470-0.
  • 2. R.Z. Valiev, A.V. Korznikov, R.R. Mulyukov, Structure and properties of ultrafinegrained materials produced by severe plastic deformation, Materials Science and Engineering A, 168, 141–148, 1993, https://doi.org/10.1016/0921-5093(93)90717-S.
  • 3. A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, A. Yanagida, Severe plastic deformation (SPD) processes for metals, CIRP Annals – Manufacturing Technology, 57, 716–735, 2008, http://dx.doi.org/10.1016/j.cirp.2008.09.005.
  • 4. N. Hansen, Hall–Petch relation and boundary strengthening, Scripta Materialia, 51, 801– 806, 2004, https://doi.org/10.1016/j.scriptamat.2004.06.002.
  • 5. D. J. Abson, J.J. Jonas, The Hall-Petch relation and high-temperature subgrains, Metal Science Journal, 4, 1970, https://doi.org/10.1179/msc.1970.4.1.24.
  • 6. M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, T.G. Langdon, Microhardness measurements and the Hall-Petch relationship in an Al-Mg alloy with submicrometer grain size, Acta Materialia, 44, 11, 4619–4629, 1996, https://doi.org/10.1016/1359-6454(96)00105-X.
  • 7. T. Koizumi, M. Kuroda, Grain size effects in aluminium processed by severe plastic deformation, Materials Science and Engineering A, 710, 300–308, 2018, https://doi.org/10.1016/j.msea.2017.10.077.
  • 8. R.G. Guan, D. Tie, A review on grain refinement of aluminum alloys: progresses, challenges and prospects, Acta Metallurgica. Sinica, 30, 409–432, 2017, http://doi.org/10.1007/s40195-017-0565-8.
  • 9. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Compact nanostructured materials from severe plastic deformation, Progress in Materials Science, 45, 103–189, 2000, http://doi.org/10.1016/S0079-6425(99)00007-9.
  • 10. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, Producing compact ultrafine-grained materials by severe plastic deformation, JOM: Journal of the Minerals, Metals & Materials Society (TMS), 58, 33–39, 2006, http://dx.doi.org/10.1007/s40195-017-0565-8.
  • 11. E. Darmiani, I. Danaee, M.A. Golozar, M.R. Toroghinejad, Corrosion investigation of Al–SiC nano-composite fabricated by accumulative roll bonding (ARB) process, Journal of Alloys and Compounds, 552, 31–39, 2013, http://dx.doi.org/10.1016/j.jallcom.2012.10.069.
  • 12. Y.F. Sun, N. Tsuji, H. Fujii, F.S. Li, Cu/Zr nanoscaled multi-stacks fabricated by accumulative roll bonding, Journal of Alloys and Compounds, 504, 443–447, 2010, http://dx.doi.org/10.1016/j.jallcom.2010.02.201.
  • 13. G.G. Maier, E.G. Astafurova, H.J. Maier, E.V. Naydenkin, G.I. Raab, P.D. Odessky, S.V. Dobatkin, Annealing behaviour of ultrafine grained structure in lowcarbon steel produced by equal channel angular pressing, Materials Science and Engineering A, 581, 104–107, 2013, http://dx.doi.org/10.1016/j.msea.2013.05.075.
  • 14. E. Mostaed, A. Fabrizi, D. Dellasega, F. Bonollo, M. Vedani, Microstructure, mechanical behaviour and low temperature superplasticity of ECAP processed ZM21 Mg alloy, Journal of Alloys and Compounds, 638, 267–276, 2015, http://dx.doi.org /10.1016/j.jallcom.2015.03.029.
  • 15. M. Besterci, T. Kvackaj, R. Kociško, J. Bacsó, K. Sulleiová, Formation of ultrafine-grained (UFG) structure and mechanical properties by severe plastic deformation (SPD), Metalurgija, 47, 4, 295–299, 2008.
  • 16. F. Khodabakhshi, M. Haghshenas, H. Eskandari, B. Koohbor, Hardness-strength relationships in fine and ultra-fine grained metals processed through constrained Groove pressing, Materials Science and Engineering A, 636, 331–339, 2015, http://dx.doi.org /10.1016/j.msea.2015.03.122.
  • 17. J. Zrnik, T. Kovarik, Z. Novy, M. Cieslar, Ultrafine-grained structure development and deformation behaviour of aluminium processed by constrained groove pressing, Materials Science and Engineering A, 503, 126–129, 2009, https://doi.org/10.1016 /j.msea.2008.03.050.
  • 18. E. Hosseini, M. Kazeminezhad, Nanostructure and mechanical properties of 0–7 strained aluminium by CGP: XRD, TEM and tensile test, Materials Science and Engineering A, 526, 219–224, 2009, https://doi.org/10.1016/j.msea.2009.07.028.
  • 19. N. Kamikawa, N. Tsuji, Microstructure and mechanical properties of ARB processed aluminium with different purities, Materials Transactions, 57, 10, 1720–1728, 2016, https://doi.org/10.2320/matertrans.MH201519.
  • 20. Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for compact materials-development of the accumulative Roll-Bonding (ARB) process, Acta Materialia, 47, 2, 579–583, 1999, https://doi.org/10.1016/S1359-6454(98)00365-6.
  • 21. A.M. Faradonbeh, M. Shamanian, H. Edris, M. Paidar, Y. Bozkurt, Friction stir welding of Al-B4C composite fabricated by accumulative roll bonding: evaluation of microstructure and mechanical behaviour, Journal of Materials Engineering and Performance, 27, 835–846, 2018, https://doi.org/10.1007/s11665-018-3131-2.
  • 22. M. Yousefieh, M. Tamizifar, S.M.A. Boutorabi, E. Borhani, An investigation on the microstructure, texture and mechanical properties of an optimized friction stir welded ultrafine-grained Al–0.2 wt% Sc alloy deformed by accumulative roll bonding, Journal of Materials Science, 53, 4623–4634, 2018, https://doi.org/10.1007/s10853-017-1897-5.
  • 23. A. Salimi, E. Borhani, E. Emadoddin, Evaluation of mechanical properties and structure of 1100-al reinforced with zro2 nano-particles via accumulatively roll-bonded, Procedia Materials Science, 11, 67–73, 2015, https://doi.org/10.1016/j.mspro.2015.11.094.
  • 24. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Ultra-fine grained compact aluminum produced by Accumulative Roll-Bonding (ARB) process, Scripta Materialia, 39, 9, 1221–1227, 1998, https://doi.org/10.1016/S1359-6462(98)00302-9.
  • 25. K.T. Ramesh, Nanomaterials Mechanics and Mechanisms, Springer, 2009, https: //doi.org/10.1007/978-0-387-09783-1.
  • 26. C.W. Schmidt, P. Knödler, H.W. Höppel, M. Göken, Particle based alloying by accumulative roll bonding in the system Al-Cu, Metals, 1, 65–78, 2011, https://doi.org/10.3390/met1010065.
  • 27. S.H. Lee, Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, Role of shear strain In ultragrain refinement by accumulative roll-bonding (ARB) process, Scripta Materialia, 46, 281–285, 2002, https://doi.org/10.1016/S1359-6462(01)01239-8.
  • 28. N. Tsuji, Y. Saito, S.H. Lee, Y. Minamino, ARB (ACCUMULATIVE Roll-Bonding) and other new techniques to produce compact ultrafine grained materials, Advanced Engneering Materials, 5, 5, 2003, https://doi.org/10.1002/adem.200310077.
  • 29. X. Huang, N. Tsuji, N. Hansen, Y. Minamino, Microstructural evolution during accumulative roll-bonding of commercial purity aluminium, Materials Science and Engineering A, 340, 265–271, 2003, https://doi.org/10.1016/S0921-5093(02)00182-X.
  • 30. W. Skrotzki, J. Scharnweber, C.G. Oertel, H.W. Höppel, I. Topic, H.G. Brokmeier, J. Jaschinski, Plastic anisotropy of ultrafine grained Al alloy AA6016 produced by accumulative roll bonding, Solid State Phenomena, 160, 171–176, 2010, https://doi.org/10.4028/www.scientific.net/SSP.160.171.
  • 31. M. Alvand, M. Naseri, E. Borhani, H. Abdollah-Pour, Nano/ultrafine grained AA2024 alloy processed by accumulative roll bonding: a study of microstructure, deformation texture and mechanical properties, Journal of Alloys and Compounds, 712, 517–525, 2017, http://dx.doi.org/10.1016/j.jallcom.2017.04.117.
  • 32. R. Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, Fundamentals of superior properties in compact NanoSPD materials, Materials Research Letters, 4, 1–21, 2016, http://dx.doi.org/10.1080/21663831.2015.1060543.
  • 33. S.H. Lee, Y. Saito, T. Sakai, H. Utsunomiya, Microstructures and mechanical properties of 6061 aluminium alloy processed by accumulative roll-bonding, Materials Science and Engineering A, 325, 228–235, 2002, https://doi.org/10.1016/S0921-5093(01)01416-2.
  • 34. S. O. Gashti, A. Fattah-alhosseini, Y. Mazaheri, M. K. Keshavarz, Effects of grain size and dislocation density on strain hardening behaviour of ultrafine grained AA1050 processed by accumulative roll bonding, Journal of Alloys and Compounds, 658, 854-861, 2016, https://doi.org/10.1016/j.jallcom.2015.11.032.
  • 35. J. Shahbazi Karami, S. Sepahi-Boroujeni, M. Khodsetan, Investigating the effects of Expansion Equal Channel Angular Extrusion (Exp-ECAE) on dynamic behavior of AA7075 aluminum alloy, International Journal of Advanced Design and Manufacturing Technology, 9, 3, 11–18, 2016.
  • 36. J. Jiang, J. Shi, Y. Yao, A. Ma, D. Song, D. Yang, J. Chen, F. Lu, Dynamic compression properties of an ultrafine-grained Al-26 wt.% Si alloy fabricated by equalchannel angular pressing, Journal of Materials Engineering and Performance, 24, 2016–2024, 2015, https://doi.org/10.1007/s11665-015-1455-8.
  • 37. P. Henrique, R. Pereira, Y.C. Wang, Y. Huang, T.G. Langdon, Influence of grain size on the flow properties of an Al-Mg-Sc alloy over seven orders of magnitude of strain rate, Materials Science and Engineering A, 685, 367–376, 2017, http://dx.doi.org/10.1016/j.msea.2017.01.020.
  • 38. M. A. Afifi, P. Henrique, R. Pereira, Y.C. Wang, Y. Wang, S. Li, T.G. Langdon, Effect of ECAP processing on microstructure evolution and dynamic compressive behaviour at different temperatures in an Al-Zn-Mg alloy, Materials Science and Engineering A, 684, 617–625, 2017, http://dx.doi.org/10.1016/j.msea.2016.12.099.
  • 39. A.N. Petrova, I.G. Brodova, S.V. Razorenov, E. V. Bobruk, Grain size effects on quasi-static and dynamic strength of ultrafine-grained Al-Mg-Mn Alloy produced by highpressure torsion, Journal of Materials Engineering and Performance, 29, 464–469, 2020, https://doi.org/10.1007/s11665-019-04511-3.
  • 40. A. Azimi1, G.M. Owolabi, H. Fallahdoost, N. Kumar, G. Warner, Dynamic failure investigation in ultrafine grained AA2219: mechanical and microstructural analysis, Metals and Materials International, 25, 900–911, 2019, https://doi.org/10.1007/s12540-019-00254-x.
  • 41. K.V. Ivanov, S.V. Razorenov, G.V. Garkushin, Quasi-quasi-static and shock-wave loading of ultrafine-grained aluminium: effect of microstructural characteristics, Journal of Materials Science, 53, 14681–14693, 2018, https://doi.org/10.1007/s10853-018-2619-3.
  • 42. C. Sigli, F. DeGeuser, A. Deschamps, J. Lépinoux, M. Perez, Recent advances in the metallurgy of aluminum alloys. Part II: Age hardening Développements récents en métallurgie des alliages d’aluminium. Deuxième partie: durcissement par revenu, Comptes Rendus Physique, 19, 8, 688–709, 2018, https://doi.org/10.1016/j.crhy.2018.10.012.
  • 43. L. Hemmouche, C. Fares, M.A. Belouchrani, Influence of heat treatments and anodization on fatigue life of 2017A alloy, Engineering Failure Analysis, 35, 554–561, 2013, https://doi.org/10.1016/j.engfailanal.2013.05.003.
  • 44. C. Fares, L. Hemmouche, M.A. Belouchrani, D. Chicot, E.S, Puchi-Cabrera, Coupled effects of substrate microstructure and sulphuric acid anodizing on fatigue life of a 2017A aluminum alloy, Materials and Design, 86, 723–734, 2015, https://doi.org/10.1016/j.matdes.2015.07.120.
  • 45. A. Deschamps, F. De Geuser, Z. Horita, S. Lee, G. Renou, Precipitation kinetics in a severely plastically deformed 7075 aluminium alloy, Acta Materialia, 66, 105–117, 2014, http://dx.doi.org/10.1016/j.actamat.2013.11.071.
  • 46. S. Pasebani, M.R. Toroghinejad, Nano-grained 70/30 brass strip produced by accumulative roll-bonding (ARB) process, Materials Science and Engineering A, 527, 491–497, 2010. http://dx.doi.org/10.1016/j.msea.2009.09.029.
  • 47. A. Medjahed, B. Li, L. Hou, R. Wu, A. Zegaoui, M. Derradji, H. Benyamina, Evolution of microstructure, mechanical properties, and thermal conductivity of an Al-Li-Cu-Mg-Zr alloy processed by Accumulative Roll Bonding (ARB), JOM: the Journal of the Minerals, Metals & Materials Society (TMS), 71, 4096–4104, 2019, https: //doi.org/10.1007/s11837-019-03646-x.
  • 48. A.A. Tiamiyu, A.Y. Badmos, A.G. Odeshi, Effects of temper condition on high strainrate deformation of AA 2017 aluminum alloy in compression, Materials and Design, 89, 872–883, 2016, https://doi.org/10.1016/j.matdes.2015.10.047.
  • 49. T. Koizumi, A. Kurumatani, M. Kuroda, Athermal strength of pure aluminum is significantly decreased by severe plastic deformation and it is markedly augmented by subsequent annealing, Scientific Reports, 10, 14090, 2020, https://doi.org/10.1038/s41598-020-70160-5.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7df33f72-4487-4a2b-8a1f-8f8c8cbbbd0c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.