PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hemodynamic impacts of left coronary stenosis : a patient-specific analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study analyses the hemodynamic variations surrounding stenoses located at the left coronary bifurcation, and their influence on the wall shear stress (WSS) in realistic coronary geometries. Four patients with suspected coronary artery disease were chosen, and coronary models were reconstructed based on high-resolution CT data. The coronary stenoses were observed at the left circumflex and left anterior descending branches, resulting in a lumen narrowing of >50%. Flow analysis was performed using computational fluid dynamics, to simulate the cardiac flow conditions of the realistic individual patient geometry. Blood flow and WSS changes in the left coronary artery were calculated throughout the entire cardiac phases. Our results revealed that the recirculation regions were found at the poststenotic locations. WSS was found to increase at the stenotic positions in all four patients. There is a strong correlation between coronary stenosis and the hemodynamic changes, which are reflected in blood flow pattern and WSS, based on the realistic left coronary geometries.
Rocznik
Strony
107--111
Opis fizyczny
BIbliogr. 24 poz., rys., tab.
Twórcy
autor
  • Discipline of Medical Imaging, Department of Imaging and Applied Physics, Curtin University, Perth, Western Australia, Australia
autor
  • Discipline of Medical Imaging, Department of Imaging and Applied Physics, Curtin University, Perth, Western Australia, Australia
autor
  • Fluid Dynamics Research Group, Department of Mechanical Engineering, Curtin University, Perth, Western Australia, Australia
Bibliografia
  • [1] CHAICHANA T., SUN Z., JEWKES J., Impact of plaques in the left coronary artery on wall shear stress and pressure gradient in coronary side branches, Computer Methods in Biomechanics and Biomedical Engineering, 2012, Epub ahead of print 1–11. DOI:10.1080/10255842.2012.671308
  • [2] SAMADY H., ESHTEHARDI P., MCDANIEL, M.C., SUO J., DHAWAN S.S., MAYNARD C., TIMMINS L.H., QUYYUMI A.A., GIDDENS D.P., Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease, Circulation, 2011, Vol. 124, 779–788.
  • [3] SUN Z., DIMPUDUS F.J., NUGROHO J., ADIPRANOTO J.D., CT virtual intravascular endoscopy assessment of coronary artery plaques: A preliminary study, European Journal of Radiology, 2010, Vol. 75, e112–e119.
  • [4] GIJSEN F.J., WENTZEL J.J., THURY A., LAMERS B., SCHUURBIERS J.C., SERRUYS P.W., van der STEEN A.F., A new imaging technique to study 3-D plaque and shear stress distribution in human coronary artery bifurcations in vivo, Journal of Biomechanics, 2007, Vol. 40(11), 2349–2357.
  • [5] CHAICHANA T., SUN Z., JEWKES J., Computational fluid dynamics analysis of the effect of plaques in the left coronary artery, Computational and Mathematical Methods in Medicine, 2012, Vol. 504367, 1–9.
  • [6] ASAKURA T., KARINO T., Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries, Circulation Research, 1990, Vol. 66, 1045–1066.
  • [7] FUSTER V., LEWIS A., Conner memorial lecture. Mechanisms leading to myocardial infarction: insights from studies of vascular biology, Circulation, 1994, Vol. 90(4), 2126–2146.
  • [8] NAM D., NI C., REZVAN A., SUO J., BUDZYN K., LLANOS A., HARRISON D., GIDDENS D., JO H., Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis, American Journal of Physiology. Heart and Circulatory Physiology, 2009, Vol. 297(4), H1535–H1543.
  • [9] ZARINS C.K., GIDDENS D.P., BHARADVAJ B.K., SOTTIURAI V.S., MABON R.F., GLAGOV S., Carotid bifurcation atherosclerosis: quantitative correlation of plaque localization with flow velocity profiles and wall shear stress, Circulation Research, 1983, Vol. 53, 502–514.
  • [10] GLAGOV S., WEISENBERG E., ZARINS C.K., STANKUNAVICIUS R., KOLETTIS G.J., Compensatory enlargement of human atherosclerotic coronary arteries, The New England Journal of Medicine, 1987, Vol. 316(22), 1372–1375.
  • [11] SUN Z., WINDER R.J., KELLY B.E., ELLIS P.K., KENNEDY P.T., HIRST D.G., Diagnostic value of CT virtual intravascular endoscopy in aortic stent-grafting, Journal of Endovascular Therapy, 2004, Vol. 11(1), 13–25.
  • [12] SUN Z., WINDER R.J., KELLY B.E., ELLIS P.K., HIRST D.G., CT virtual intravascular endoscopy of abdominal aortic aneurysms treated with suprarenal endovascular stent grafting, Abdominal Imaging, 2003, Vol. 28(4), 580–587.
  • [13] SUN Z., CHAICHANA T., Fenestrated stent graft repair of abdominal aortic aneurysm: hemodynamic analysis of the effect of fenestrated stents on the renal arteries, Korean Journal of Radiology, 2010. Vol. 11(1), 95–106.
  • [14] SUN Z., CHAICHANA T., Investigation of the hemodynamic effect of stent wires on renal arteries in patients with abdominal aortic aneurysms treated with suprarenal stent-grafts, CardioVascular Radiology, 2009, Vol. 32(4), 647–657.
  • [15] NICHOLS W., O’ROURKE M., McDonald’s Blood Flow in Arteries, Hodder Arnold, London, 2005, 326–327.
  • [16] CHAICHANA T., SUN Z., JEWKES J., Computation of haemodynamics in the left coronary artery with variable angulations, Journal of Biomechanics, 2011, Vol. 44(10), 1869–1878.
  • [17] BOUTSIANIS E., DAVE H., FRAUENFELDER T., POULIKAKOS D., WILDERMUTH S., TURINA M., VENTIKOS Y., ZUND G., Computational simulation of intracoronary flow based on real coronary geometry, European Journal of Cardio-Thoracic Surgery, 2004, Vol. 26, 248–256.
  • [18] MILNOR W., Hemodynamics, Williams & Wilkins, Baltimore, 1989.
  • [19] JOHNSTON B.M., JOHNSTON P.R., CORNEY S., KILPATRICK D., Non-Newtonian blood flow in human right coronary arteries: steady state simulations, Journal of Biomechanics, 2004, Vol. 37, 709–720.
  • [20] SUN Z., CAO Y., Multislice CT angiography assessment of left coronary artery: Correlation between bifurcation angle and dimensions and development of coronary artery disease, European Journal of Radiology, 2011, Vol. 79, e90–e95.
  • [21] FEUCHTNER G.M., CURY R.C., JODOCY D., FRIEDRICH G.J., BLUMENTHAL R.S., BUDOFF M.J., NASIR K., Differences in coronary plaques composition by noninvasive computed tomography in individuals with and without obstructive coronary artery disease, Atherosclerosis, 2011, Vol. 215, 90–95.
  • [22] SLAGER C.J., WENTZEL J.J., GIJSEN F.J.H., THURY A., van der WAL A.C., SCHAAR J.A., SERRUYS P.W., The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications, Nature Clinical Practice Cardiovascular Medicine, 2004, Vol. 2, 456–464.
  • [23] CHERUVU P.K., FINN A.V., GARDNER C., CAPLAN J., GOLDSTEIN J., STONE G.W., VIRMANI R., MULLER J.E., Frequency and distribution of thin-cap fibroatheroma and ruptured plaques in human coronary arteries: a pathologic study, Journal of the American College of Cardiology, 2011, Vol. 50, 940–949.
  • [24] DILETTI R., ONUMA,Y., FAROOQ V., GOMEZ-LARA J., BRUGALETTA S., VAN GEUNS R.J., REGAR E., DE BRUYNE B., DUDEK D., THUESEN L., CHEVALIER B., MCCLEAN D., WINDECKER S., WHITBOURN R., SMITS P., KOOLEN J., MEREDITH I., LI D., VELDHOF S., RAPOZA R., GARCIAGARCIA H.M., ORMISTON J.A., SERRUYS P.W., 6-month clinical outcomes following implantation of the bioresorbable everolimus-eluting vascular scaffold in vessels smaller or larger than 2.5 mm, Journal of the American College of Cardiology, 2011, Vol. 58, 258–264.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7df329a1-af11-4127-bb49-1b6d1deca7bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.