PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Normal contact stiffness of fractal rough surfaces

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We used the fractal theory based on a single variable Weierstrass–Mandelbrot function to obtain the normal contact stiffness if rough and smooth isotropic surfaces are pressed against each other. Because in the original fractal theory the distribution of contact area is assumed geometrically, we propose the method in which the actual deformation of asperities and a correction due to asperity coupling (interaction) will be taken into account. This correction is equivalent to an increase of the effective separation by a quantity proportional to the nominal pressure and it has a significant effect on contact stiffness at larger normal loads (low separations). The numerical results demonstrate a nonlinear evolution of the contact stiffness with the normal load in particular in the first stage of loading at low squeezing pressures. We have compared the results of the theoretical contact stiffness using the fractal method with the experimental ultrasonic measurements. Experimental results made on real surfaces agree remarkably well with the theoretical predictions.
Rocznik
Strony
411–--428
Opis fizyczny
Bibliogr. 46 poz., rys. kolor.
Twórcy
  • Division of Computer Methods, Maritime University of Szczecin Pobożnego 11, 70-507 Szczecin, Poland
autor
  • Institute of Fundamental Technological Research. Polish Academy of Sciences Pawinskiego 5B, 02-106 Warsaw, Poland
  • Institute of Fundamental Technological Research. Polish Academy of Sciences Pawinskiego 5B, 02-106 Warsaw, Poland
Bibliografia
  • 1. M. Ciavarella, G. Murolo, G. Demelio, J.R. Barber, Elastic contact stiffness and contact resistance for the Weierstrass profile, J. of the Mechanics and Physics of Solids, 52, 1247–1265, 2004.
  • 2. C. Campañá, B.N.J. Persson, M.H. Müser, Transverse and normal interfacial stiffness with randomly rough surfaces, J. Phys.: Condens. Matter., 23, 085001, 2011.
  • 3. S. Akarapu, T. Sharp, M.O. Robbins, Stiffness of contact between rough surfaces, Physical Review Letters, 106, 204301, 2011.
  • 4. S. Medina, D. Nowell, D. Dini, Analytical and numerical models for tangential stiffness of rough elastic contacts, Tribology Lett., 49, 103–115, 2013.
  • 5. R. Pohrt, V.L. Popov, Normal contact stiffness of elasic solids with fractal rough surfaces, Physical Review Letters, 108, 104301, 2012.
  • 6. R. Pohrt, V.L. Popov, A.E. Filipov, Normal contact stiffness of elasic solids with fractal rough surfaces for one- and three-dimensinal systems, Physical Review, E 86, 026710, 2012.
  • 7. L. Pastewka, N. Prodanov, B. Lorenz, M.H. Müser, M.O. Robbins, B.N.J. Persson, Finite-size scaling in the interfacial stiffness of rough elastic contacts, Physical Review, E 87, 062809, 2013.
  • 8. C. Campañá, M.H. Müser, M.O. Robbins, Elastic contact between self–affine surfaces: Comparison of numerical stress and contact correlation functions with analytical predictions, J. Phys.: Condens. Matter., 20, 354013, 2008.
  • 9. M. Paggi, J.R. Barber, Contact conductance of rough surfaces composed of modified RMD patches, Int. J. of Heat and Mass Transfer, 54, 4664–4672, 2011.
  • 10. J.R. Barber, Bounds on the electrical resistance between contacting elastic rough bodies, Proc. R. Soc. Lond. A, 459, 53–66, 2003.
  • 11. J.R. Barber, Incremental stiffness and electrical conductance in the contact of rough finite bodies, Physical Review, E 87, 013203, 2013.
  • 12. M.E. Kartal, D.M. Mulvihill, D. Nowell, D.A. Hills, Measurements of pressure and area dependent tangential contact stiffness between rough surafces using digital image correlation, Tribology Int., 44, 1188–1198, 2011.
  • 13. B.B. Mandelbrot, Self-affine fractals and fractal dimension, Physica Scripta, 32, 257–260, 1985.
  • 14. A. Majumdar, C.L. Tien, Fractal characterization and simulation of rough surfaces, Wear, 136, 313–327, 1990.
  • 15. A. Majumdar, B. Bhushan, Role of fractal geometry in roughness characterization and contact mechanics of surfaces, Trans. ASME, Journal of Tribology, 112, 205–216, 1990.
  • 16. S. Wang, K. Komvopoulos, A fractal theory of the interfacial temperature distribution in the slow sliding regime: Part I. Elastic contact and heat transfer analysis, Trans. ASME, Journal of Tribology, 116, 812–823, 1994.
  • 17. T.R. Thomas, B.-G. Rosen, N. Amini, Fractal characterisation of the anisotropy of rough surfaces, Wear, 232, 41–50, 1999.
  • 18. D.J. Whitehouse, Handbook of Surface Metrology, Institute of Physics Pub., Bristol and Philadelphia, 1994.
  • 19. M.V. Berry, Z.V. Lewis, On the Weierrstrass–Mandelbrot fractal function, Proc. Roy. Soc. Lond., A370, 459–484, 1980.
  • 20. L. He, J. Zhu, The fractal character of processed metal surfaces, Wear, 208, 17–24, 1997.
  • 21. W. Yan, K. Komvopoulos, Contact analysis of elastic–plastic fractal surfaces, Journal of Applied Physics, 84, 3617–3624, 1998.
  • 22. S. Jiang, Y. Zheng, H. Zhu, A contact stiffness model of machined plane joint based on fractal theory, Trans. ASME, Journal of Tribology, 132, 011401-1-011401-7, 2010.
  • 23. Y. Morag, I. Etsion, Resolving the contradiction of asperities plastic to elastic mode transition in current contact models of fractal rough surfaces, Wear, 262, 624–629, 2007.
  • 24. J.L. Liou, J.F. Lin, A modifed fractal microcontact model developed for asperity heights with variable morphology parameters, Wear, 268, 133–144, 2010.
  • 25. J.A. Greenwood, A unified theory of roughness, Proc. Roy. Soc. Lond., A393, 133–157, 1984.
  • 26. P.B. Nayak, Random process model of rough surfaces, Trans. ASME, J. of Lubrication Technology, 93, 398–407, 1971.
  • 27. J.A. Greenwood, J.B.P. Williamson, Developments in the theory of surface rughness, in: Proc. 4th Leeds–Lyon Symp. on Tribology, D. Dowson et al. [Eds.], Mechanical Engineering Publications, London, 167–177, 1977.
  • 28. R. Buczkowski, M. Kleiber, A stochastic model of rough surfaces for finite element contact analysis, Comput. Methods Appl. Mech. Engrg., 169, 43–59, 1999.
  • 29. A.W. Bush, R.D. Gibson, G.P. Keogh, The limit of elastic deformation in the contact of rough surfaces, Mech. Res. Comm., 3, 169–174, 1976.
  • 30. P. Pawlus, W. Zelasko, The importance of sampling interval for rough contact mechanics, Wear, 276–277, 121–129, 2012.
  • 31. M. Scaraggi, C. Putignano, G. Carbone, Elastic contact of rough surfaces: A Simple criterion to make 2D isotropic roughness equivalent to 1D one, Wear, 297, 811–817, 2013.
  • 32. G. Zavarise, M. Borri-Brunetto, M. Paggi, On the resolution dependence of micromechanical contact models, Wear, 262, 42–54, 2007.
  • 33. S. Kucharski, G. Starzynski, Study of contact of rough surfaces: Modeling and experiment, Wear, 311, 167–179, 2014.
  • 34. A. Majumdar, B. Bhushan, Fractal model of elastic-plastic contact between rough surfaces, J. of Tribology ASME, 113, 1–11, 1993.
  • 35. H. Aramaki, H.S. Cheng, Y.W. Chung, The contact between rough surfaces with longitudinal texture, J. of Tribology ASME, 115, 419–424, 1993.
  • 36. M. Ciavarella, J.A. Greenwood, M. Paggi, Inclusion of interaction in the Greenwood and Williamsson contact theory, Wear, 265, 729–734, 2008.
  • 37. D.M. Mulvihill, M.E. Kartal, D. Nowell, D.A. Hills, An elastic–plastic asperity interaction model for sliding friction, Tribology Int., 44, 1679–1694, 2011.
  • 38. V.A. Yastrebov, J. Durand, H. Proudhon, G. Cailletaud, Rough surface analysis be means of the Finite Element Method and of a new reduced model, C.R. Mecanique, 339, 473–490, 2011.
  • 39. J.F. Jerier, J.F. Molinari, Normal contact rough surfaces by the Discrete Element Method, Tribology Int., 47, 1–8, 2012.
  • 40. G. Starzynski, R. Buczkowski, Ultrasonic measurements of contact stiffness between rough surfaces, J. of Tribology Trans. ASME 136, No. 3, 034503–1, 2014.
  • 41. B.W. Drinkwater, R.S. Dwyer–Joyce, P. Cawley, A study of the interaction between ultrasound and a partially contacting solid–solid interface, Proc. Roy. Soc. London, A452, 2613–2628, 1996.
  • 42. J.-Y. Kim, A. Baltazar S.I. Rokhlin, Ultrasonic assessement of rough surface contact between solids from elastoplastic loading–unloading hysteresis cycle, J. of the Mechanics and Physics of Solids, 52, 1911–1934, 2004.
  • 43. M. Gonzalez–Valadez, A. Baltazar, R.S. Dwyer–Joyce, Study of interfacial stiffness ratio of a rough surface in contact using a spring model, Wear, 268, 373–379, 2010.
  • 44. J.A. Greenwood, J.B.P. Williamson, Contact of nominally flat surfaces, Proc. Roy. Soc. Lond., A295, 300–319, 1966.
  • 45. R. Buczkowski, M. Kleiber, Elasto–plastic statistical model of strongly anisotropic rough surfaces for finite element 3D-contact analysis, Comput. Methods Appl. Mech. Engrg., 195, 5141–5161, 2006.
  • 46. R. Buczkowski, M. Kleiber, Statistical models of rough surfaces for finite element 3D-contact analysis, Arch. Comput. Methods Eng., 16, 399–424, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7de932c1-1ad7-4adb-843e-b65c82daf4c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.