PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling blood vessel dynamics: Effects of glucose variations on HUVECs in a hollow fiber bioreactor under laminar shear stress

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aimed to establish a blood vessel model within a hollow fiber bioreactor to evaluate the impact of high and fluctuating glucose levels on human umbilical vein endothelial cells (HUVECs) under laminar shear stress (LSS). HUVECs were cultured for 48 h in normal (5 mM), high (20 mM), and variable (20 mM/5 mM alternating every 24 h) glucose concentrations under LSS of 0.66 Pa. An automated medium replacement system was developed. The control cultures remained static. The analysis included cell viability via cytometric analysis, glucose consumption, lactate production via electroenzymatic methods, and the expression of 21 genes via qPCR. The percentage of apoptotic cells did not significantly differ across glucose concentrations under LSS. HUVECs favor glycolysis for energy regardless of LSS. Under LSS, the IL1B, CCL2, and SELE genes were upregulated under high-glucose conditions and downregulated under variable-glucose conditions. A few other genes related to inflammation, oxidative stress, cell adhesion and apoptosis were upregulated under high-glucose conditions. In conclusion, using the blood vessel model we effectively examined the impact of glucose profiles on HUVECs under LSS in a device replicating the cylindrical geometry of blood vessels. LSS and tubular cell arrangement might mitigate the adverse effects of variable glucose on endothelial cells.
Twórcy
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Trojdena Street, 02-109 Warsaw, Poland
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
  • [1] Krüger-Genge, Blocki, Franke, Jung. Vascular Endothelial Cell Biology: An Update. Int J Mol Sci 2019;20:4411. https://doi.org/10.3390/ijms20184411.
  • [2] Gero D. Hyperglycemia-Induced Endothelial Dysfunction. In: Lenasi H, editor. Endothelial Dysfunction - Old Concepts and New Challenges, InTech; 2018. https://doi.org/10.5772/intechopen.71433.
  • [3] Rolo AP, Palmeira CM. Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicol Appl Pharm 2006;212:167-78. https://doi.org/10.1016/j.taap.2006.01.003.
  • [4] Sheu ML, Ho FM, Yang RS, Chao KF, Lin WW, Lin-Shiau SY, et al. High Glucose Induces Human Endothelial Cell Apoptosis Through a Phosphoinositide 3-Kinase-Regulated Cyclooxygenase-2 Pathway. ATVB 2005;25:539-45. https://doi.org/10.1161/01.ATV.0000155462.24263.e4.
  • [5] Hempel A, Maasch C, Heintze U, Lindschau C, Dietz R, Luft FC, et al. High Glucose Concentrations Increase Endothelial Cell Permeability via Activation of Protein Kinase Cα. Circ Res 1997;81:363-71. https://doi.org/10.1161/01.RES.81.3.363.
  • [6] Zhang Z-Y, Miao L-F, Qian L-L, Wang N, Qi M-M, Zhang Y-M, et al. Molecular Mechanisms of Glucose Fluctuations on Diabetic Complications. Front Endocrinol 2019;10:640. https://doi.org/10.3389/fendo.2019.00640.
  • [7] Risso A, Mercuri F, Quagliaro L, Damante G, Ceriello A. Intermittent high glucose enhances apoptosis in human umbilical vein endothelial cells in culture. Am J Physiol Cell Physiol 2001;281:E924-30. https://doi.org/10.1152/ajpendo.2001.281.5.E924.
  • [8] Quagliaro L, Piconi L, Assaloni R, Martinelli L, Motz E, Ceriello A. Intermittent High Glucose Enhances Apoptosis Related to Oxidative Stress in Human Umbilical Vein Endothelial Cells. Diabetes 2003;52:2795-804. https://doi.org/10.2337/diabetes.52.11.2795.
  • [9] Piconi L, Quagliaro L, Da Ros R, Assaloni R, Giugliano D, Esposito K, et al. Intermittent high glucose enhances ICAM-1, VCAM-1, E-selectin and interleukin-6 expression in human umbilical endothelial cells in culture: the role of poly(ADPribose) polymerase. JTH 2004;2:1453-9. https://doi.org/10.1111/j.1538-7836.2004.00835.x.
  • [10] Quagliaro L, Piconi L, Assaloni R, Daros R, Maier A, Zuodar G, et al. Intermittent high glucose enhances ICAM-1, VCAM-1 and E-selectin expression in human umbilical vein endothelial cells in culture: The distinct role of protein kinase C and mitochondrial superoxide production. Atherosclerosis 2005;183:259-67. https://doi.org/10.1016/j.atherosclerosis.2005.03.015.
  • [11] Piconi L, Quagliaro L, Assaloni R, Da Ros R, Maier A, Zuodar G, et al. Constant and intermittent high glucose enhances endothelial cell apoptosis through mitochondrial superoxide overproduction. Diabetes Metab Res Rev 2006;22: 198-203. https://doi.org/10.1002/dmrr.613.
  • [12] Schisano B, Tripathi G, McGee K, McTernan PG, Ceriello A. Glucose oscillations, more than constant high glucose, induce p53 activation and a metabolic memory in human endothelial cells. Diabetologia 2011;54:1219-26. https://doi.org/10.1007/s00125-011-2049-0.
  • [13] Maeda M, Hayashi T, Mizuno N, Hattori Y, Kuzuya M. Intermittent High Glucose Implements Stress-Induced Senescence in Human Vascular Endothelial Cells: Role of Superoxide Production by NADPH Oxidase. PLoS One 2015;10:e0123169.
  • [14] La Sala L, Pujadas G, De Nigris V, Canivell S, Novials A, Genovese S, et al. Oscillating glucose and constant high glucose induce endoglin expression in endothelial cells: the role of oxidative stress. Acta Diabetol 2015;52:505-12. https://doi.org/10.1007/s00592-014-0670-3.
  • [15] La Sala L, Cattaneo M, De Nigris V, Pujadas G, Testa R, Bonfigli AR, et al. Oscillating glucose induces microRNA-185 and impairs an efficient antioxidant response in human endothelial cells. Cardiovasc Diabetol 2016;15:71. https://doi.org/10.1186/s12933-016-0390-9.
  • [16] La Sala L, Mrakic-Sposta S, Micheloni S, Prattichizzo F, Ceriello A. Glucose-sensing microRNA-21 disrupts ROS homeostasis and impairs antioxidant responses in cellular glucose variability. Cardiovasc Diabetol 2018;17:105. https://doi.org/10.1186/s12933-018-0748-2.
  • [17] Zhou HL, Jiang XZ, Ventikos Y. Role of blood flow in endothelial functionality: a review. Front Cell Dev Biol 2023;11:1259280. https://doi.org/10.3389/fcell.2023.1259280.
  • [18] Dessalles CA, Leclech C, Castagnino A, Barakat AI. Integration of substrate- and flow-derived stresses in endothelial cell mechanobiology. Commun Biol 2021;4: 764. https://doi.org/10.1038/s42003-021-02285-w.
  • [19] Chien S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Phyciol-Heart Circ Physiol 2007;292:H1209-24. https://doi.org/10.1152/ajpheart.01047.2006.
  • [20] Wragg JW, Durant S, McGettrick HM, Sample KM, Egginton S, Bicknell R. Shear Stress Regulated Gene Expression and Angiogenesis in Vascular Endothelium. Microcirculation 2014;21:290-300. https://doi.org/10.1111/micc.12119.
  • [21] Cheng H, Zhong W, Wang L, Zhang Q, Ma X, Wang Y, et al. Effects of shear stress on vascular endothelial functions in atherosclerosis and potential therapeutic approaches. Biomed Pharmacother 2023;158:114198. https://doi.org/10.1016/j.biopha.2022.114198.
  • [22] Shyy YJ, Hsieh HJ, Usami S, Chien S. Fluid shear stress induces a biphasic response of human monocyte chemotactic protein 1 gene expression in vascular endothelium. Proc Natl Acad Sci USA 1994;91:4678-82. https://doi.org/10.1073/pnas.91.11.4678.
  • [23] Chin LK, Yu JQ, Fu Y, Yu T, Liu AQ, Luo KQ. Production of reactive oxygen species in endothelial cells under different pulsatile shear stresses and glucose concentrations. Lab Chip 2011;11:1856. https://doi.org/10.1039/c0lc00651c.
  • [24] Yu JQ, Liu XF, Chin LK, Liu AQ, Luo KQ. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system. Lab Chip 2013;13:2693-700. https://doi.org/10.1039/C3LC50105A.
  • [25] Liu Z, Sun H, Chen Y, He J, Zhu L, Yang B, et al. High glucose-induced injury in human umbilical vein endothelial cells is alleviated by vitamin D supplementation through downregulation of TIPE1. Diabetol Metab Syndr 2024;16:18. https://doi.org/10.1186/s13098-024-01264-5.
  • [26] Cusack R, Leone M, Rodriguez AH, Martin-Loeches I. Endothelial Damage and the Microcirculation in Critical Illness. Biomedicines 2022;10:3150. https://doi.org/10.3390/biomedicines10123150.
  • [27] Ulrich-Merzenich G, Metzner C, Bhonde RR, Malsch G, Schiermeyer B, Vetter H. Simultaneous Isolation of Endothelial and Smooth Muscle Cells from Human Umbilical Artery or Vein and Their Growth Response to Low-Density Lipoproteins. In Vitro Cell Dev Biol Anim 2002;38:265. https://doi.org/10.1290/1071-2690(2002)038<0265:SIOEAS>2.0.CO;2.
  • [28] Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of Human Endothelial Cells Derived from Umbilical Veins. Identification by Morphologic and Immunologic Criteria. J Clin Invest 1973;52:2745-56. https://doi.org/10.1172/JCI107470.
  • [29] Murao K, Yu X, Cao WM, Imachi H, Chen K, Muraoka T, et al. d-Psicose inhibits the expression of MCP-1 induced by high-glucose stimulation in HUVECs. Life Sci 2007;81:592-9. https://doi.org/10.1016/j.lfs.2007.06.019.
  • [30] Chen Y, Chen J, Hu J, Yang Z, Shen Y. Enhancement of lipopolysaccharide-induced toll-like receptor 2 expression and inflammatory cytokine secretion in HUVECs under high glucose conditions. Life Sci 2013;92:582-8. https://doi.org/10.1016/j.lfs.2013.01.021.
  • [31] Cliff N. Dominance statistics: Ordinal analyses to answer ordinal questions. Psychol Bull 1993;114:494-509. https://doi.org/10.1037/0033-2909.114.3.494.
  • [32] Ciechanowska A, Gora I, Sabalinska S, Foltynski P, Ladyzynski P. Effect of glucose concentration and culture substrate on HUVECs viability in in vitro cultures: A literature review and own results. Biocybern Biomed Eng 2021;41:1390-405. https://doi.org/10.1016/j.bbe.2021.04.010.
  • [33] Jackson ML, Bond AR, George SJ. Mechanobiology of the endothelium in vascular health and disease: in vitro shear stress models. Cardiovasc Drugs Ther 2023;37: 997-1010. https://doi.org/10.1007/s10557-022-07385-1.
  • [34] Ohta M, Sakamoto N, Funamoto K, Wang Z, Kojima Y, Anzai H. A Review of Functional Analysis of Endothelial Cells in Flow Chambers. JFB 2022;13:92. https://doi.org/10.3390/jfb13030092.
  • [35] Andrée B, Ichanti H, Kalies S, Heisterkamp A, Strau. S, Vogt P-M, et al. Formation of three-dimensional tubular endothelial cell networks under defined serum-free cell culture conditions in human collagen hydrogels. Sci Rep 2019;9:5437. https://doi.org/10.1038/s41598-019-41985-6.
  • [36] Locatelli L, Inglebert M, Scrimieri R, Sinha PK, Zuccotti GV, Milani P, et al. Human endothelial cells in high glucose: New clues from culture in 3D microfluidic chips. FASEB J 2022:36. https://doi.org/10.1096/fj.202100914R.
  • [37] Kuricová K, Pácal L, Šoupal J, Prázný M, Kaňková K. Effect of glucose variability on pathways associated with glucotoxicity in diabetes: Evaluation of a novel in vitro experimental approach. Diabetes Res Clin Pract 2016;114:1-8. https://doi.org/10.1016/j.diabres.2016.02.006.
  • [38] Capelle X, Schaaps JP, Bavi Dido JV, Dauby M, Desaive T, Van Linthout C, et al. Variation of the maximum velocity along the umbilical vein supports the Reynolds pulsometer model. Journal of Gynecology Obstetrics and Human Reproduction 2020;49:101617. https://doi.org/10.1016/j.jogoh.2019.07.012.
  • [39] Ciechanowska A, Gora IM, Sabalinska S, Ladyzynski P. The Effect of High and Variable Glucose on the Viability of Endothelial Cells Co-Cultured with Smooth Muscle Cells. Int J Mol Sci 2022;23:6704. https://doi.org/10.3390/ijms23126704.
  • [40] Selva ML, Beltramo E, Pagnozzi F, Bena E, Molinatti PA, Molinatti GM, et al. Thiamine corrects delayed replication and decreases production of lactate and advanced glycation end-products in bovine retinal and human umbilical vein endothelial cells cultured under high glucose conditions. Diabetologia 1996;39: 1263-8. https://doi.org/10.1007/s001250050568.
  • [41] Wang D, Wang Q, Yan G, Qiao Y, Sun L, Zhu B, et al. High glucose and interleukin 1β-induced apoptosis in human umbilical vein endothelial cells involves in down-regulation of monocarboxylate transporter 4. Biochem Bioph Res Com 2015;466: 607-14. https://doi.org/10.1016/j.bbrc.2015.09.016.
  • [42] DeStefano JG, Williams A, Wnorowski A, Yimam N, Searson PC, Wong AD. Real-time quantification of endothelial response to shear stress and vascular modulators. Integr Biol 2017;9:362-74. https://doi.org/10.1039/C7IB00023E.
  • [43] Gosmanov AR, Stentz FB, Kitabchi AE. De novo emergence of insulin-stimulated glucose uptake in human aortic endothelial cells incubated with high glucose. Am J Physiol-Endoc Metab 2006;290:E516-22. https://doi.org/10.1152/ajpendo.00326.2005.
  • [44] Filippini A, Tamagnone L, D’Alessio A. Endothelial Cell Metabolism in Vascular Functions. Cancers 2022;14:1929. https://doi.org/10.3390/cancers14081929.
  • [45] De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, et al. Role of PFKFB3-Driven Glycolysis in Vessel Sprouting. Cell 2013;154:651-63. https://doi.org/10.1016/j.cell.2013.06.037.
  • [46] Eelen G, De Zeeuw P, Treps L, Harjes U, Wong BW, Carmeliet P. Endothelial Cell Metabolism. Physiol Rev 2018;98:3-58. https://doi.org/10.1152/physrev.00001.2017.
  • [47] Wai LS, Sum SY. The glycolytic process in endothelial cells and its implications. Acta Pharmacol Sin 2022;43:251-9. https://doi.org/10.1038/s41401-021-00647-y.
  • [48] Li X, Kumar A, Carmeliet P. Metabolic Pathways Fueling the Endothelial Cell Drive. Annu Rev Physiol 2019;81:483-503. https://doi.org/10.1146/annurev-physiol-020518-114731.
  • [49] Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science 2009;324:1029-33. https://doi.org/10.1126/science.1160809.
  • [50] Locasale JW, Cantley LC. Metabolic Flux and the Regulation of Mammalian Cell Growth. Cell Metab 2011;14:443-51. https://doi.org/10.1016/j.cmet.2011.07.014.
  • [51] Koziel A, Woyda-Ploszczyca A, Kicinska A, Jarmuszkiewicz W. The influence of high glucose on the aerobic metabolism of endothelial EA.hy926 cells. Pflugers Arch - Eur. J Physiol 2012;464:657-69. https://doi.org/10.1007/s00424-012-1156-1.
  • [52] Cucullo L, Couraud P-O, Weksler B, Romero I-A, Hossain M, Rapp E, et al. Immortalized Human Brain Endothelial Cells and Flow-Based Vascular Modeling: A Marriage of Convenience for Rational Neurovascular Studies. J Cereb Blood Flow Metab 2008;28:312-28. https://doi.org/10.1038/sj.jcbfm.9600525.
  • [53] Beard E, Lengacher S, Dias S, Magistretti PJ, Finsterwald C. Astrocytes as Key Regulators of Brain Energy Metabolism: New Therapeutic Perspectives. Front Physiol 2022;12:825816. https://doi.org/10.3389/fphys.2021.825816.
  • [54] Wang C-C, Tung Y-T, Chang H-C, Lin C-H, Chen Y-C. Effect of Probiotic Supplementation on Newborn Birth Weight for Mother with Gestational Diabetes Mellitus or Overweight/Obesity: A Systematic Review and Meta-Analysis. Nutrients 2020;12:3477. https://doi.org/10.3390/nu12113477.
  • [55] Zhu D-D, Tang R-N, Lv L-L, Wen Y, Liu H, Zhang X-L, et al. Interleukin-1β mediates high glucose induced phenotypic transition in human aortic endothelial cells. Cardiovasc Diabetol 2016;15:42. https://doi.org/10.1186/s12933-016-0358-9.
  • [56] Gora IM, Ciechanowska A, Ladyzynski P. NLRP3 Inflammasome at the Interface of Inflammation, Endothelial Dysfunction, and Type 2 Diabetes. Cells 2021;10:314. https://doi.org/10.3390/cells10020314.
  • [57] Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Sig Transduct Target Ther 2017;2:17023. https://doi.org/10.1038/sigtrans.2017.23.
  • [58] Uruski P, Mikuła-Pietrasik J, Drzewiecki M, Budkiewicz S, Gładki M, Kurmanalina G, et al. Diverse functional responses to high glucose by primary and permanent hybrid endothelial cells in vitro. J Mol Cell Cardiol 2021;156:1-6. https://doi.org/10.1016/j.yjmcc.2021.03.004.
  • [59] Kinoshita K, Tanjoh K, Noda A, Sakurai A, Yamaguchi J, Azuhata T, et al. Interleukin-8 Production from Human Umbilical Vein Endothelial Cells During Brief Hyperglycemia: The Effect of Tumor Necrotic Factor-α. J Surg Res 2008;144: 127-31. https://doi.org/10.1016/j.jss.2007.03.020.
  • [60] Sathanoori R, Swärd K, Olde B, Erlinge D. The ATP Receptors P2X7 and P2X4 Modulate High Glucose and Palmitate-Induced Inflammatory Responses in Endothelial Cells. PLoS One 2015;10:e0125111.
  • [61] Takaishi H, Taniguchi T, Takahashi A, Ishikawa Y, Yokoyama M. High glucose accelerates MCP-1 production via p38 MAPK in vascular endothelial cells. Biochem Bioph Res Com 2003;305:122-8. https://doi.org/10.1016/S0006-291X(03)00712-5.
  • [62] Li H, Peng W, Jian W, Li Y, Li Q, Li W, et al. ROCK inhibitor fasudil attenuated high glucose-induced MCP-1 and VCAM-1 expression and monocyte-endothelial cell adhesion. Cardiovasc Diabetol 2012;11:65. https://doi.org/10.1186/1475-2840-11-65.
  • [63] Toma L, Sanda GM, Stancu CS, Niculescu LS, Raileanu M, Sima AV. Oscillating Glucose Induces the Increase in Inflammatory Stress through Ninjurin-1 Up-Regulation and Stimulation of Transport Proteins in Human Endothelial Cells. Biomolecules 2023;13:626. https://doi.org/10.3390/biom13040626.
  • [64] Kim IJ, Son SM, Lee MK, Jeong H, Kim YK. Effect of high glucose concentration on expression of adhesion molecules in endothelial cells. Diabetes Metab J 1998;22: 280-9.
  • [65] Wang G, Wu S, Xu W, Jin H, Zhu Z, Li Z, et al. Geniposide inhibits high glucose-induced cell adhesion through the NF-κB signaling pathway in human umbilical vein endothelial cells. Acta Pharmacol Sin 2010;31:953-62. https://doi.org/0.1038/aps.2010.83.
  • [66] Morigi M, Zoja C, Figliuzzi M, Foppolo M, Micheletti G, Bontempelli M, et al. Fluid shear stress modulates surface expression of adhesion molecules by endothelial cells. Blood 1995;85:1696-703. https://doi.org/10.1182/blood.V85.7.1696.bloodjournal8571696.
  • [67] Huang RB, Eniola-Adefeso O. Shear Stress Modulation of IL-1β-Induced E-Selectin Expression in Human Endothelial Cells. PLoS One 2012;7:e31874.
  • [68] Warboys CM, De Luca A, Amini N, Luong L, Duckles H, Hsiao S, et al. Disturbed Flow Promotes Endothelial Senescence via a p53-Dependent Pathway. ATVB 2014; 34:985-95. https://doi.org/10.1161/ATVBAHA.114.303415.
  • [69] An Y, Xu B, Wan S, Ma X, Long Y, Xu Y, et al. The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction. Cardiovasc Diabetol 2023;22: 237. https://doi.org/10.1186/s12933-023-01965-7.
  • [70] Li Q, Lin Y, Wang S, Zhang L, Guo L. GLP-1 Inhibits High-Glucose-Induced Oxidative Injury of Vascular Endothelial Cells. Sci Rep 2017;7:8008. https://doi.org/10.1038/s41598-017-06712-z.
  • [71] Ceolotto G, Gallo A, Papparella I, Franco L, Murphy E, Iori E, et al. Rosiglitazone Reduces Glucose-Induced Oxidative Stress Mediated by NAD(P)H Oxidase via AMPK-Dependent Mechanism. ATVB 2007;27:2627-33. https://doi.org/10.1161/ATVBAHA.107.155762.
  • [72] Duerrschmidt N, Stielow C, Muller G, Pagano PJ, Morawietz H. NO-mediated regulation of NAD(P)H oxidase by laminar shear stress in human endothelial cells. J Physiol 2006;576:557-67. https://doi.org/10.1113/jphysiol.2006.111070.
  • [73] Jeon H, Boo YC. Laminar shear stress enhances endothelial cell survival through a NADPH oxidase 2-dependent mechanism. Biochem Bioph Res Com 2013;430: 460-5. https://doi.org/10.1016/j.bbrc.2012.12.016.
  • [74] Kobayashi T, Tahara Y, Matsumoto M, Iguchi M, Sano H, Murayama T, et al. Roles of thromboxane A2 and prostacyclin in the development of atherosclerosis in apoEdeficient mice. J Clin Invest 2004;114:784-94. https://doi.org/10.1172/JCI200421446.
  • [75] Linton MF, Fazio S. Cyclooxygenase-2 and atherosclerosis. Curr Opin Lipidol 2002; 13:497-504. https://doi.org/10.1097/00041433-200210000-00005.
  • [76] Cosentino F, Eto M, De Paolis P, Van Der Loo B, Bachschmid M, Ullrich V, et al. High Glucose Causes Upregulation of Cyclooxygenase-2 and Alters Prostanoid Profile in Human Endothelial Cells: Role of Protein Kinase C and Reactive Oxygen Species. Circulation 2003;107:1017-23. https://doi.org/10.1161/01.CIR.0000051367.92927.07.
  • [77] He C, Chul Choi H, Xie Z. Enhanced Tyrosine Nitration of Prostacyclin Synthase Is Associated with Increased Inflammation in Atherosclerotic Carotid Arteries from Type 2 Diabetic Patients. Am J Pathol 2010;176:2542-9. https://doi.org/10.2353/ajpath.2010.090783.
  • [78] Frangos JA, Eskin SG, McIntire LV, Ives CL. Flow Effects on Prostacyclin Production by Cultured Human Endothelial Cells. Science 1985;227:1477-9. https://doi.org/10.1126/science.3883488.
  • [79] Taba Y, Sasaguri T, Miyagi M, Abumiya T, Miwa Y, Ikeda T, et al. Fluid Shear Stress Induces Lipocalin-Type Prostaglandin D 2 Synthase Expression in Vascular Endothelial Cells. Circul Res 2000;86:967-73. https://doi.org/10.1161/01.RES.86.9.967.
  • [80] Zhai J, Tao L, Zhang Y, Gao H, Qu X, Song Y, et al. Salvianolic Acid B Attenuates Apoptosis of HUVEC Cells Treated with High Glucose or High Fat via Sirt1 Activation. Evid-Based Compl Alt Med (eCAM) 2019;2019:1-11. https://doi.org/10.1155/2019/9846325.
  • [81] Lin X, Yang T, Zhang X, Wei W. Lifestyle intervention to prevent gestational diabetes mellitus and adverse maternal outcomes among pregnant women at high risk for gestational diabetes mellitus. J Int Med Res 2020;48. https://doi.org/10.1177/0300060520979130.
  • [82] Zhang J, Guo Y, Ge W, Zhou X, Pan M. High glucose induces apoptosis of HUVECs in a mitochondria-dependent manner by suppressing hexokinase 2 expression. Exp Ther Med 2019. https://doi.org/10.3892/etm.2019.7609.
  • [83] Bartling B, Tostlebe H, Darmer D, Holtz J, Silber R-E, Morawietz H. Shear Stress-Dependent Expression of Apoptosis-Regulating Genes in Endothelial Cells. Biochem Bioph Res Com 2000;278:740-6. https://doi.org/10.1006/bbrc.2000.3873.
  • [84] Świderska E, Strycharz J, Wróblewski A, Czarny P, Szemraj J, Drzewoski J, et al. Chronic and Intermittent Hyperglycemia Modulates Expression of Key Molecules of PI3K/AKT Pathway in Differentiating Human Visceral Adipocytes. Int J Mol Sci 2021;22:7712. https://doi.org/10.3390/ijms22147712.
  • [85] De Nigris V, Pujadas G, La Sala L, Testa R, Genovese S, Ceriello A. Short-term high glucose exposure impairs insulin signaling in endothelial cells. Cardiovasc Diabetol 2015;14:114. https://doi.org/10.1186/s12933-015-0278-0.
  • [86] Salt IP, Morrow VA, Brandie FM, Connell JMC, Petrie JR. High Glucose Inhibits Insulin-stimulated Nitric Oxide Production without Reducing Endothelial Nitricoxide Synthase Ser1177 Phosphorylation in Human Aortic Endothelial Cells. J Biol Chem 2003;278:18791-7. https://doi.org/10.1074/jbc.M210618200.
  • [87] Lee H-Y, Youn S-W, Oh B-H, Kim H-S. Krüppel-Like Factor 2 Suppression by High Glucose as a Possible Mechanism of Diabetic Vasculopathy. Korean Circ J 2012;42: 239. https://doi.org/10.4070/kcj.2012.42.4.239.
  • [88] Wang L, O’Kane AM, Zhang Y, Ren J. Maternal obesity and offspring health: Adapting metabolic changes through autophagy and mitophagy. Obesity Rev 2023; 24:e13567.
  • [89] DeVerse JS, Bailey KA, Jackson KN, Passerini AG. Shear stress modulates RAGE-mediated inflammation in a model of diabetes-induced metabolic stress. Am J Phyciol-Heart Circ Physiol 2012;302:H2498-508. https://doi.org/10.1152/ajpheart.00869.2011.
  • [90] Sun B, Luo Z, Zhou J. Comprehensive elaboration of glycemic variability in diabetic macrovascular and microvascular complications. Cardiovasc Diabetol 2021;20:9. https://doi.org/10.1186/s12933-020-01200-7.
  • [91] Klimontov VV, Saik OV, Korbut AI. Glucose Variability: How Does It Work? Int J Mol Sci 2021;22:7783. https://doi.org/10.3390/ijms22157783.
  • [92] Le Floch J-P, Kessler L. Glucose Variability: Comparison of Different Indices During Continuous Glucose Monitoring in Diabetic Patients. J Diabetes Sci Technol 2016; 10:885-91. https://doi.org/10.1177/1932296816632003.
  • [93] Zinman B, Marso SP, Poulter NR, Emerson SS, Pieber TR, Pratley RE, et al. Day-today fasting glycaemic variability in DEVOTE: associations with severe hypoglycaemia and cardiovascular outcomes (DEVOTE 2). Diabetologia 2018;61: 48-57. https://doi.org/10.1007/s00125-017-4423-z.
  • [94] Zhou JJ, Schwenke DC, Bahn G, Reaven P. Glycemic Variation and Cardiovascular Risk in the Veterans Affairs Diabetes Trial. Diabetes Care 2018;41:2187-94. https://doi.org/10.2337/dc18-0548.
  • [95] Kilpatrick ES, Rigby AS, Atkin SL. The Effect of Glucose Variability on the Risk of Microvascular Complications in Type 1 Diabetes. Diabetes Care 2006;29:1486-90. https://doi.org/10.2337/dc06-0293.
  • [96] Siegelaar SE, Barwari T, Kulik W, Hoekstra JB, DeVries JH. No Relevant Relationship between Glucose Variability and Oxidative Stress in Well-Regulated Type 2 Diabetes Patients. J Diabetes Sci Technol 2011;5:86-92. https://doi.org/10.1177/193229681100500112.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7de36a71-b323-4b14-a475-e756fcaf93e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.