PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computational optimization and implementation of control system for mechatronic treadmill with body weight support system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to present a novel mechatronic system for gait re-education which consists of a body weight support system (BWS system) and a treadmill. This publication covers mainly issues related to the design and optimization process of a control algorithm dedicated for the unloading system. The proposed control system is based on a fuzzy logic controller coupled with a PID regulator. The optimization of parameters for regulators has been conducted based on numerical simulations in which a hybrid optimization method combining a genetic algorithm with a gradient algorithm has been used. The developed control system has been tested experimentally.
Słowa kluczowe
Rocznik
Strony
1179--1191
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Silesian University of Technology, Department of Theoretical and Applied Mechanics, Gliwice, Poland
autor
  • Silesian University of Technology, Department of Theoretical and Applied Mechanics, Gliwice, Poland
  • Silesian University of Technology, Department of Theoretical and Applied Mechanics, Gliwice, Poland
Bibliografia
  • 1. Cao J., Xie S.Q., Das R., Zhu G.L., 2014, Control strategies for effective robot assisted gait rehabilitation: the state of art and future prospects, Medical Engineering and Physics, 36, 12, 1555-1566
  • 2. Chen G., Chan C.K., Guo Z., Yu H., 2013, A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy, Critical Reviews in Biomedical Engineering, 41, 4-5, 343-363
  • 3. Dragunas A.C., Gordon K.E., 2016, Body weight support impacts lateral stability during treadmill walking, Journal of Biomechanics, 49, 13, 2662-2668
  • 4. Duda S., Gąsiorek D., Gembalczyk G., Kciuk S., Mężyk A., 2016, Mechatronic device for locomotor training, Acta Mechanica et Automatica, 10, 4, 310-315
  • 5. Duda S., Gemalczyk G., 2016, Experimental study on the fuzzy-PID hybrid control algorithm for unloading system in mechatronic device for gait re-education, Proceedings of VII European Congress on Computational Methods in Applied Sciences and Engineering, 6567-6573
  • 6. Duda S., Gembalczyk G., Switonski E., 2017, Design study and development of mechatronic treadmill for gait reeducation, Engineering Dynamics and Life Sciences. Proceedings of 14th International Conference Dynamical Systems Theory and Applications 2017, 183-191
  • 7. Frey M., Colombo G., Vaglio M., Bucher R., Jorg M., Riener R., 2006, A novel mechatronic body weight support system, Neural Systems and Rehabilitation Engineering, 14, 3, 311-321
  • 8. Gniłka J., Mężyk A., 2017, Experimental identification and selection of dynamic properties of a high-speed tracked vehicle suspension system, Eksploatacja i Niezawodność – Maintenance and Reliability, 19, 1, 108-113
  • 9. Hidler J., Brennan D., Black I., Nichols D., Brady K., 2011, ZeroG: Overground gait and balance training system, Journal of Rehabilitation Research and Development, 48, 4, 287-298
  • 10. Jurkojć J., Wodarski P., Bieniek A., Gzik M., Michnik R., 2017, Influence of changing frequency and various sceneries on stabilometric parameters and on the effect of adaptation in an immersive 3D virtual environment, Acta of Bioengineering and Biomechanics, 19, 3, 129-137
  • 11. Koceska N., Koceski S., 2013, Review: robot devices for gait rehabilitation, International Journal of Computer Applications, 62, 13, 1-8
  • 12. Koenig A., Omlin X., Bergmann J., Zimmerli L., Bolliger M., Muller F., 2011, Controlling patient participation during robot assisted gait training, Journal of Neuroengineering and Rehabilitation, 8, 14-25
  • 13. Kot A., Nawrocka A., 2012, Balance platform system dynamic properties, Journal of Vibroengineering, 14, 1, 178-182
  • 14. Lunenburger L., Colombo G., Riener R. ¨ , 2007, Biofeedback for robotic gait rehabilitation, Journal of Neuroengineering and Rehabilitation, 4, 1
  • 15. Mehrholz J., Pohl M., Elsner B., 2014, Treadmill training and body weight support for walking after stroke, [In:] Cochrane Database of Systematic Reviews, 1, John Wiley & Sons, Ltd
  • 16. Mężyk A., Klein W., Fice M., Pawlak M., Basiura K., 2016, Mechatronic model of continuous miner cutting drum driveline, Mechatronics, 37, 12-20
  • 17. Miądlicki K., Pajor M., 2015, Real-time gesture control of a CNC machine tool with the use Microsoft Kinect sensor, International Journal of Scientific and Engineering Research, 6, 538-543
  • 18. Mignardot J.B., Le Goff C.G., van Den Brand R., 2017, A multidirectional gravity-assist algorithm that enhances locomotor control in patients with stroke or spinal cord injury, Science Translational Medicine, 9
  • 19. Pajor M., Herbin P., 2015, Exoskeleton of upper limb – model using real movement parameters (in Polish), Modelowanie Inżynierskie, 26, 57, 40-46
  • 20. Pratt G.A., Williamson M.M., 1995, Series elastic actuators, IEEE International Conference on Intelligent Robots and Systems, 399-406
  • 21. Querry R.G., Pacheco F., Annaswamy T., Goetz L., Winchester P.K., Tansey K.E., 2008, Synchronous stimulation and monitoring of soleus H reflex during robotic body weightsupported ambulation in subjects with spinal cord injury, Journal of Rehabilitation Research and Development, 45, 1, 175-186
  • 22. Raczka W., Sibielak M., Kowal J., Konieczny J., 2013, Application of an SMA spring for vibration screen control, Journal of Low Frequency Noise, Vibration and Active Control, 32, 1-2, 117-131
  • 23. Reinkensmeyer D.J., Dietz V., 2016, Neurorehabilitation Technology, Springer, International Publishing
  • 24. Riener R., Lunenburger L., Maier I.C., Colombo G., Dietz V., 2010, Locomotor training in subjects with sensori-motor deficits: an overview of the robotic gait orthosis lokomat, Journal of Healthcare Engineering, 1, 2, 197-216
  • 25. Robinson D.W., Pratt J.E., Paluska D.J., Pratt G.A., 1999, Series elastic actuator development for a biomimetic walking robot, Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 561-568.
  • 26. Sapiński B., Rosół M., Węgrzynowski M., 2016, Investigation of an energy harvesting MR damper in a vibration control system, Smart Materials and Structures, 25, 12, 125017, 1-15
  • 27. Snamina J., Kowal J., Orkisz P., 2013, Active suspension based on low dynamic stiffness, Acta Physica Polonica A, 123, 6, 1118-1122
  • 28. Xu W.J., 2012, Permanent magnet synchronous motor with linear quadratic speed controller, Energy Procedia, 14, 364-369
  • 29. Zhao C.S., Zhu S.J., He Q.W., 2007, Fuzzy-PID control method for two-stage vibration isolation system, Journal of Theoretical and Applied Mechanics, 45, 1, 171-177
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ddf0b2a-6670-4f28-944b-7126e4ec5b79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.