PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Degree of complexation of microelement ions by biodegradable IDHA chelator in water and simulated fertilization environment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The degree of complexation of microelement ions by the biodegradable chelating agent - IDHA was examined in the work. The tests were carried out in water and in a simulated fertilizer environment. In order to compare the obtained results, tests were also carried out for the commonly used EDTA. The performed analyzes allow to determine the influence of the presence of compounds containing macroelements on the degree of binding of microelement ions by the biodegradable IDHA and EDTA chelators. The obtained results make it possible to determine the optimal conditions for the chelation of cations by IDHA, which in the future may be used in the production of micronutrient fertilizers on a large scale.
Słowa kluczowe
Rocznik
Strony
61--66
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wz.
Twórcy
  • Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Engineering and Technology of Chemical Processes Wrocław, Poland
  • Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Engineering and Technology of Chemical Processes Wrocław, Poland
  • Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Engineering and Technology of Chemical Processes Wrocław, Poland
  • Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Engineering and Technology of Chemical Processes Wrocław, Poland
Bibliografia
  • 1. Clemens, F.F., Whitehurst, B.M. & Whitehurst, G.B. (1990). Chelates in agriculture. Fertiliser Res., 25, 127–131. DOI:10.1007/BF01095092.
  • 2. Cieślak-Golonka, M., Starosta, J. & Wasielewski, M. (2010). Wstęp do chemii koordynacyjnej (Introduction to Coordination Chemistry). Poland: Wyd. PWN. (in Polish).
  • 3. Prete, P., Fiorentino, A., Rizzo, L., Proto, A. & Cucciniello, R. (2021). Review of aminopolycarboxylic acids–based metal complexes application to water and wastewater treatment by (photo-) Fenton process at neutral pH. Curr. Opin. Green Sustain. Chem. 28, 100451-. DOI: 10.1016/j.cogsc.2021.100451.
  • 4. Svanedal, I., Boija, S., Almesåker, A., Persson, G., Andersson, F., Hedenström, E., Bylund, D., Norgren, M. & Edlund, H. (2014). Metal ion coordination, conditional stability constants, and solution behavior of chelating surfactant metal complexes. Langmuir, 30:16, 4605–4612. DOI: 10.1021/la5002336.
  • 5. Casconea, S., Apicella, P., Caccavo, D., Lamberti, G.& Barba, A.A. (2015). Optimization of chelates production process for agri-cultural administration of inorganic micronutrients. Chem. Eng. Trans. 44, 217–222. DOI: 10.3303/CET1544037.
  • 6. López-Rayo, S., Correas, C. & Lucena, J.J. (2012). Novel chelating agents as manganese and zinc fertilisers: Characterisation, theoretical speciation and stability in solution. Chem. Speciat. Bioavailab. 24, 147–158. DOI: 10.3184/095422912X13409631969915.
  • 7. Wu, S.H. & Li, L.M. (2008). Research on Compound of Amino Acid Microelement Chelate and Determination of Chelate Ratio. Feed. Ind., 29, 11–12. DOI: 10.3969/j.issn.1001-991X.2008.16.003.
  • 8. Knepper, T.P. (2003). Synthetic chelating agents and compounds exhibiting complexing properties in the aquatic environment. T. Anal. Chem., 22:10, 708–724. DOI: 10.1016/S0165-9936(03)01008-2.
  • 9. Nowack, B., Xue, H. & Sigg, L. (1997). Influence of natural and anthropogenic ligands on metal transport during infiltration of river water to groundwater. Environ. Sci. Technol., 31:3, 866–872. DOI: 10.1021/es960556f.
  • 10. Schmidt, C.K. & Brauch, H. (2004). Impact of amino-polycarboxylates on aquatic organisms and eutrophication: overview of available data. Environ. Toxic., 19:6, 620–637. DOI: 10.1002/tox.20071.
  • 11. Bucheli-Witschel, M. & Egli, T. (2001). Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiol Rev., 25, 69–106. DOI: 10.1111/j.1574-6976.2001.tb00572.x.
  • 12. Knepper, T.P., Werner, A. & Bogenschultz, G. (2005). Degradation of synthetic chelating agents in surface and waste water by ion chromatography-mass spectrometry. J. Chromatogr. A. 1085, 240–246. DOI: 10.1016/j.chroma.2005.06.045.
  • 13. Nowack, B. & VanBriesen, J.M. (2005). Chelating agents in the environment. Biogeochem. of chelating agents ACS Symp. (pp. 1-18). American Chemical Society: Washington, DC.
  • 14. Evangelou, M.W.H., Ebel, M. & Scheaffer, A. (2007). Chelate assisted phytoextraction of heavy metals form soil. Effect, mechanism, tovicity, and fate of chelating agents. Chemo-sphere. 68, 989–1003. DOI: 10.1016/j.chemosphere.2007.01.062.
  • 15. Nowack, B. (2002). Environmental chemistry of aminopolycarboxylate chelating agents. Envi. Sci. Technol., 36:19, 4009–4016. DOI: 10.1021/es025683s.
  • 16. Hoffmann, J. & Hoffmann, K. (2006). Nawozy mikroelementowe (Micronutrient fertilizers). Przem. Chem., 85(8-9), 827–830. (in Polish).
  • 17. Finck, A. (1982). Fertilizers and Fertilization. Introduction and Practical Guide to Crop Fertilization. USA: Verlag Chemie.
  • 18. Gangloff, W.J., Westfall, D.G., Peterson, G.A., Mortvedt, J.J. (2006). Mobility of organic and inorganic zinc fertilizers in soils. Commun. Soil Sci. Plant Anal., 37, 199–209. DOI: 10.1080/00103620500403200.
  • 19. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products.
  • 20. Abadía, J., Vázquez, S., Rellán-Álvarez, R., El-Jendoubi, H.,. Abadía, A., Álvarez-Fernández, A., López-Millán, A. (2011). Towards a knowledge-based correction of iron chlorosis. Plant Phys. Biochem., 49, 471–482. DOI: 10.1016/j. plaphy.2011.01.026.
  • 21. Czuba, R. & Szukalski, H. (1973). Mikronawozy i ich zastosowanie (Microfertilizers and their use) Poland: Państwowe Wydaw. Rolnicze i Leśne. (in Polish).
  • 22. Borowiec, M., Hoffmann, K. & Hoffmann, J. (2009). The determination of the degree of zinc complexation by chelating agents with differential pulse voltammetr. Intern. J. Environ. Anal. Chem., 89(8), 717–725. DOI: 10.1080/03067310802691672.1
  • 23. Nortemann, B. (1991). Biodegradation of EDTA. Appl. Microbiol. Biotechnol., 51, 751–759. DOI: 10.1007/s002530051458.
  • 24. Pinto, I.S.S., Neto, I.F.F. & Soaes, H.M.V. (2014). Biodegradable chelating agents for industrial, domestic and agriculture application-a review. Environ. Sci. Pollut. Res., 21, 11893–11906. DOI: 10.1007/s11356-014-2592-6.
  • 25. Sylwester, E. (2001). Effect of EDTA on plutonium migration. J. Radioanal. Nuc. Chem., 250, 47–53. DOI: 10.1023/A:1013260029269.
  • 26. Spearot, R.M. & Peck, J.V. (1984). Recovery process of complex copper-bearing rinse waters. Environ. 3, 123–128. DOI: 10.1002/ep.670030214.
  • 27. Belly, R.T., Lauff, J.J. & Goodhue, C.T. (1975). Degradation of ethylenediaminetetraacetic acid by microbial population froman aerated lagoon. Appl. Microbiol., 29, 787–794. DOI: 10.1128/am.29.6.787-794.1975.
  • 28. Nowack, B., Kari, F.G. & Krüger, H.G. (2001). The remobilization of metals from iron oxides and sediments by metal-EDTA complexes. Water, Air, Soil Poll., 125, 243–257. DOI: 10.1023/A:1005296312509.
  • 29. Metsärinne, S., Ronkainen, E., Tuhkanen, T., Aksela, R. & Sillanpää, M. (2007). Biodegradation of novel amino acid derivatives suitable for complexing agents in pulp bleaching applications. Sci. Total Environ., 377, 45–51. DOI: 10.1016/j. scitotenv.2007.01.097.
  • 30. Klem-Marciniak, E., Hoffmann, K., Hoffmann, J. (2018). The aerobic biodegradation of EDDHA and EDDHSA in water under the static test conditions, Desal. Water Treat. 134, 1–6. DOI: 10.5004/dwt.2018.22280.
  • 31. Klem-Marciniak, E., Hoffmann, K., Hoffmann, J. & Porwoł, M. (2017). Badania biodegradacji chelatorów nawozowych w środowisku wodnym w warunkach testu kinetycznego. Przem. Chem., 96(11), 2253–2255. DOI: 10.15199/62.2017.11.7.
  • 32. Hartman, J., Woodbury, R. (1994). U.S. Patent No. 5362412. Washington, D.C.: U.S. Patent and Trademark Office.
  • 33. Groth, T. (1995). U.S. Patent No. 6107518. Washington, D.C.: U.S. Patent and Trademark Office.
  • 34. Dean, F. (2007). U.S. Patent No. 7166688. Washington, D.C.: U.S. Patent and Trademark Office.
  • 35. Cokesa, Z., Knackmuss, H. & Rieger, P. (2004). Bio-degradation of all stereoisomers of the EDTA substitute iminodisuccinate by Agrobacterium tumefaciens BY6 requires an epimerase and a stereoselective C-N lyase. Appl. Environ. Microbiol., 70, 7, 3941–3947. DOI: 10.1128/AEM.70.7.3941-3947.2004.
  • 36. Reinecke, F., Groth, T., Heise, K., Joentgen, W. & Muller, N. (2000). A. Steinbuchel, Isolation and characterization of an Achromobacter xylosoxidans strain B3 and other bacteria capable to degrade the synthetic chelating agent iminodisuccinate. FEMS Microbiology Letters. 188, 41–46. DOI: 10.1111/j.1574-6968.2000.tb09166.x.
  • 37. Cokesa, Z., Lakner, S., Knackmuss, H. & Rieger, P. (2004). A stereoselective carbon-nitrogen lyase from Ralstonia sp. SLRS7 cleaves two of three isomers of iminodisuccinate. Biode-gradation. 15, 229–239. DOI: 10.1023/b:biod.0000042903.04718. f6.
  • 38. Villen, M., Garcia-Arsuaga, A. & Lucena, J.J. (2007). Potential use of biodegradable chelate N-(1,2-Dicarboxyethyl)- D,L-aspartic acid/Fe3+ as an Fe fertilizer. J. Agric. Food Chem., 55, 402–407. DOI: 10.1021/jf062471w.
  • 39. Kołodyńska, D. (2009). Iminodisuccinic acid as a new complexing agent for removal of heavy metal ions from industrial effluents. Chem. Eng. J., 152, 277–28. DOI: 10.1016/j. cej.2009.05.002.
  • [40.] Nawrocki, A., Stefaniak, F., Mrozek-Niecko, A. & Olszewski, R. (2013). U.S. Patent No. 8431734. Washington, D.C.: U.S. Patent and Trademark Office.
  • [41.] Klem-Marciniak, E., Huculak-Mączka, M., Hoffmann, J., & Hoffmann, K. (2020). Badania stopnia skompleksowania jonów cynku przez wybrane czynniki chelatujące (Studies of the degree of complexation of zinc ions by selected chelating agents). Przem. Chem., 99(8), 1218–1221. DOI: 10.15199/62.2020.8.21. (in Polish).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ddde101-e6fa-4a31-802b-e96cd98f3803
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.