PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Effect of Na2CO3 and CaCO3 on deep dephosphorization by the direct reduction of high-phosphorus oolitic hematite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The direct reduction–magnetic separation process based on coal is considered to be one of the most important methods that can effectively utilize high-phosphorus oolitic hematite. In this study, the mechanism of the effects of CaCO3 and Na2CO3 on the dephosphorization of high-phosphorus oolitic hematite during the direct reduction process was investigated using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The results showed that Na2CO3 and CaCO3 reacted with Al2O3 and SiO2 during the direct reduction process, inhibited the generation of hercunite (FeAl2O4) and fayalite (Fe2SiO4), and promoted the reduction of metallic iron (Fe). Furthermore, the reaction inhibited the reduction of apatite and prevented the generation of FeP2. Na2CO3 could change the form of phosphorus in the gangue from Ca3(PO4)2 to Na2Ca4(PO4)2SiO4. Increasing the dosages of Na2CO3 and CaCO3 in the dephosphorization agent and increasing the content of Na2CO3 in the dephosphorization agent were beneficial to the growth of metallic iron particles, and increasing the dosage of Na2CO3, CaCO3 in the dephosphorization agent had more significant effects on metallic iron particles than increasing the content of Na2CO3 in the dephosphorization agent. The research conducted in this study is expected to provide a basis for the effective exploitation of complex and refractory iron ores.
Rocznik
Strony
art. no. 195249
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
autor
  • Changsha Research Institute of Mining and Metallurgy Company Limited, Hunan Changsha 410012, China
autor
  • School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
autor
  • School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
autor
  • School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
autor
  • School of Civil Engineering, North China University of Technology, Beijing 100144, China
autor
  • School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
Bibliografia
  • ANAMERIC, B., KAWATRA, S.K., 2007. Properties and features of direct reduced iron. Mineral processing and extractive metallurgy review. 28, 59–116.
  • BAO, Q., GUO, L., GUO, Z., 2021. A novel direct reduction-flash smelting separation process of treating high phosphorous iron ore fines. Powder Technology. 377, 149-162.
  • POWNCEBY, M.I., HAPUGODA, S., MANUEL, J., WEBSTER, N.A.S. , MACRAE, C.M., 2019. Characterisation of phosphorus and other impurities in goethite-rich iron ores – Possible P incorporation mechanisms. Minerals Engineering. 143, 106022.
  • ROY, S.K., NAYAK, D. , RATH, S.S., 2020. A review on the enrichment of iron values of low-grade Iron ore resources using reduction roasting-magnetic separation. Powder Technology. 367, 796-808.
  • SUN, Y., HAN, Y., GAO, P., WEI, X., LI, G., 2015. Thermogravimetric study of coal-based reduction of oolitic iron ore: Kinetics and mechanisms. International Journal of Mineral Processing. 143, 87-97.
  • JIN, J., ZHOU, W., SUN, Y., HAN, Y., LI, Y., 2021. Reaction Characteristics and Existing Form of Phosphorus during Coal-Based Reduction of Oolitic Iron Ore. Minerals. 11, 247.
  • WU, S., SUN, T.C, XU, H., 2023. A new way to efficient utilization of eggshell waste: As green dephosphorization agent and accelerator for reduction roasting of high-phosphorus oolitic iron ore. Process Safety and Environmental Protection. 173, 702-714.
  • WU, S., SUN, T.C, KOU, J., 2022. A novel and clean utilization of converter sludge by co-reduction roasting with high-phosphorus iron ore to produce powdery reduced iron. Journal of Cleaner Production. 363, 132362.
  • ZHANG, H., LUO, L., 2017. Process mineralogy and characteristic associations of iron and phosphorus-based minerals on oolitic hematite. Journal of Central South University. 24, 1959-1967.
  • NUNES, A.P.L., PINTO, C.L.L., VALADÃO, G.E.S. , VIANA, P.R.D.M., 2012. Floatability studies of wavellite and preliminary results on phosphorus removal from a Brazilian iron ore by froth flotation. Minerals Engineering. 39, 206-212.
  • OMRAN, M., FABRITIUS, T. , MATTILA, R., 2015. Thermally assisted liberation of high phosphorus oolitic iron ore: A comparison between microwave and conventional furnaces. Powder Technology. 269, 7-14.
  • SUN, Y., HAN, Y., LI, Y., LI, Y., 2017. Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore. International Journal of Minerals, Metallurgy, and Materials. 24, 123-129.
  • TANG, H., QI, T., QIN, Y., 2015. Production of Low-Phosphorus Molten Iron from High-Phosphorus Oolitic Hematite Using Biomass Char. JOM. 67, 1956-1965.
  • XIAO, J., ZHOU, L., 2019. Increasing Iron and Reducing Phosphorus Grades of Magnetic-Roasted High-Phosphorus Oolitic Iron Ore by Low-Intensity Magnetic Separation–Reverse Flotation. Processes. 7, 388.
  • CHEN, C., ZHANG, Y., ZOU, K., ZHANG, F., 2023. Flotation Dephosphorization of High-Phosphorus Oolitic Ore. Minerals (Basel). 13, 1485.
  • DELVASTO, P., VALVERDE, A., BALLESTER, A., MUÑOZ, J.A., GONZÁLEZ, F., BLÁZQUEZ, M.L., IGUAL, J.M. , GARCÍA-BALBOA, C., 2008. Diversity and activity of phosphate bioleaching bacteria from a high-phosphorus iron ore. Hydrometallurgy. 92, 124-129.
  • PAN, J., LU, S., LI, S., ZHU, D., GUO, Z., SHI, Y., DONG, T., 2022. A New Route to Upgrading the High-Phosphorus Oolitic Hematite Ore by Sodium Magnetization Roasting-Magnetic Separation-Acid and Alkaline Leaching Process. Minerals (Basel). 12, 568.
  • SHEN, S.B., RAO, R.R. , WANG, J.C., 2013. Application of indigenous sulfur-oxidizing bacteria from municipal wastewater to selectively bioleach phosphorus from high-phosphorus iron ore: effect of particle size. Environmental technology. 34, 173-180.
  • WANG, H., LI, G., ZHAO, D., MA, J., YANG, J., 2017. Dephosphorization of high phosphorus oolitic hematite by acid leaching and the leaching kinetics. Hydrometallurgy. 171, 61-68.
  • ZHANG, L., MACHIELA, R., DAS, P., ZHANG, M., EISELE, T., 2019. Dephosphorization of unroasted oolitic ores through alkaline leaching at low temperature. Hydrometallurgy. 184, 95-102.
  • WU, S., SUN, T., KOU, J., XU, H., 2023. A new iron recovery and dephosphorization approach from high phosphorus oolitic iron ore via oxidation roasting-gas-based reduction and magnetic separation process. Powder Technology. 413, 118043.
  • WU, S., LI, Z., SUN, T., KOU, J., LI, X., 2021. Effect of additives on iron recovery and dephosphorization by reduction roasting-magnetic separation of refractory high-phosphorus iron ore. International journal of minerals, metallurgy and materials. 28, 1908-1916.
  • YU, W., SUN, T., CUI, Q., 2014. Can sodium sulfate be used as an additive for the reduction roasting of high-phosphorus oolitic hematite ore? International Journal of Mineral Processing. 133, 119-122.
  • YU, W., SUN, T., CUI, Q., XU, C., KOU, J., 2015. Effect of Coal Type on the Reduction and Magnetic Separation of a High-phosphorus Oolitic Hematite Ore. ISIJ International. 55, 536-543.
  • WU, S., SUN, T., KOU, J., LI, X., XU, C., CHEN, Z., 2022. Influence of Sodium Salts on Reduction Roasting of High-Phosphorus Oolitic Iron Ore. Mineral processing and extractive metallurgy review. 43, 947-953.
  • WU, S., LI, Z., SUN, T., LI, X., XU, C., 2022. Effect of calcium compounds on direct reduction and phosphorus removal of high-phosphorus iron ore. Journal of Central South University. 29, 443-454.
  • XU, H., SUN, T., KOU, J., HAN, W., WU, S.C., 2023. Effect of Raw Material Particle Size on the Direct Reduction Process of High-Phosphorus Oolitic Hematite. Mining, metallurgy & exploration. 40, 109-120.
  • YU, W., TANG, Q., CHEN, J., SUN, T., 2016. Thermodynamic analysis of the carbothermic reduction of a high-phosphorus oolitic iron ore by FactSage. International Journal of Minerals, Metallurgy, and Materials. 23, 1126-1132.
  • LI, L., SUN, T., KOU, J., XU, C., LIU, Z., GUO, Q., 2012. Industry Test on Phosphorus Removal and Direct Reduction of High-phosphorus Oolitic Hematite Ore. Advanced Materials Research. 402, 535-541.
  • LI, L., CHANG, S., HUA, Z., YAN, X., 2012. Effect of Coal levels during Direct Reduction Roasting of High Phosphorus Oolitic Hematite in a Tunnel Kiln. International Journal of Mining Science and Technology. 22, 323-328.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7dd789ef-d87b-44ff-b71f-e6d273d62811
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.