PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High Purity Tungsten Spherical Particle Preparation From WC-Co Spent Hard Scrap

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wytwarzanie wysokiej czystości sferycznych cząstek wolframu z twardego złomu WC-Co
Języki publikacji
EN
Abstrakty
EN
Tungsten carbide-cobalt hard metal scrap was recycled to obtain high purity spherical tungsten powder by a combined hydrometallurgy and physical metallurgy pathway. Selective leaching of tungsten element from hard metal scrap occurs at solid / liquid interface and therefore enlargement of effective surface area is advantageous. Linear oxidation behavior of Tungsten carbide-cobalt and the oxidized scrap is friable to be pulverized by milling process. In this regard, isothermally oxidized Tungsten carbide-cobalt hard metal scrap was mechanically broken into particles and then tungsten trioxide particle was recovered by hydrometallurgical method. Recovered tungsten trioxide was reduced to tungsten particle in a hydrogen environment. After that, tungsten particle was melted and solidified to make a spherical one by RF (Ratio Frequency) thermal plasma process. Well spherical tungsten micro-particle was successfully obtained from spent scrap. In addition to the morphological change, thermal plasma process showed an advantage for the purification of feedstock particle.
Twórcy
autor
  • Incheon Regional Division (Korea Institute of Industrial Technology, Incheon, Korea)
autor
  • Department of Materials Science and Engineering, Yonsei University, Seoul, Korea
autor
  • Incheon Regional Division (Korea Institute of Industrial Technology, Incheon, Korea)
autor
  • Incheon Regional Division (Korea Institute of Industrial Technology, Incheon, Korea)
Bibliografia
  • [1] K. B. Shedd, 1nd edition. (U.S. Department of the Interior, United States), R3-6 (2011).
  • [2] A. Koutsospyros, W. Braida, C. Christodoulatos, D. Dermatas, N. Strigul, Journal of Hazardous Materials 136, 1-19 (2006).
  • [3] C. Louro, A. Cavaleiro, Journal of Processing Technology 92-93, 162-168 (1999).
  • [4] F. Lofaj, Y. S. Kaganovskii, Journal of Materials Science 30, 1811-1817 (1995).
  • [5] P. O. Schissel, O. C. Trulson, The Journal of Chamical Physics 43, 737-744 (1965).
  • [6] S. N. Basu, V. K. Sarin, Materials Science Engineering: A 209, 206-212 (1996).
  • [7] Y. P. Wan, J. R. Fincke, S. Sampath, V. Prasad, H. Herman, International Journal Heat and Mass Transfer 45, 1007-1015 (2002).
  • [8] G. S. Chn, L. C. Yang, H. S. Tian, C. S. Hsu, Thin Solid Films 484, 83-89 (2005).
  • [9] S. Rousseau, M. Benmansour, D. Morvan, J. Amouroux, Solar Energy Materials and Solar Cells. 91, 1906-1915 (2007).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7dc92798-2782-474c-a94a-868c8921e112
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.