Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the problem of coupling the gas flow dynamics in pipelines with the thermodynamics of hydrogen solubility in steel for the estimation of the fracture toughness. In particular, the influence of hydrogen blended natural gas transmission on hydrogen solubility and, consequently, on fracture toughness is investigated with a focus on the L485ME low-alloy steel grade. Hydraulic simulations are conducted to obtain the pressure and temperature conditions in the pipeline. The hydrogen content is calculated from Sievert’s law and, as a consequence, the fracture toughness of the base metal and heat-affected zone is estimated. Experimental data is used to define hydrogen-assisted crack size propagation in steel as well as to a plane strain fracture toughness. The simulations are conducted for a real natural gas transmission system and compared against the threshold stress intensity factor. The results showed that the computed fracture toughness for the heat-affected zone significantly decreases for all natural gas and hydrogen blends. The applied methodology allows for identification of the hydrogen-induced embrittlement susceptibility of pipelines constructed from thermomechanically rolled tubes worldwide most commonly used for gas transmission networks in the last few decades.
Czasopismo
Rocznik
Tom
Strony
381--403
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
autor
- Warsaw University of Technology, Department of Heating and Gas Systems, Nowowiejska 20, 00-653 Warsaw, Poland
autor
- Warsaw University of Technology, Department of Heating and Gas Systems, Nowowiejska 20, 00-653 Warsaw, Poland
Bibliografia
- [1] Cazenave P., Jimenez K., Gao M., Moneta A., Hryciuk P.: Hydrogen assisted cracking driven by cathodic protection operated at near –1200 mV CSE – an onshore natural gas pipeline failure. J. Pipeline Sci. Eng. 1(2021), 1, 100–121.
- [2] Abdelghani M., Tewfik G., Witek M., Djahida D.: Factors of Stress Concentration around Spherical Cavity Embedded in Cylinder Subjected to Internal Pressure. Materials 14(11) (2021).
- [3] Wasim M., Djukic M.B., Ngo T.D.: Influence of hydrogen-enhanced plasticity and decohesion mechanisms of hydrogen embrittlement on the fracture resistance of steel. Eng. Fail. Anal. 123(2021), 105312.
- [4] Troiano A.R.: The role of hydrogen and other interstitials in the mechanical behavior of metals. Metallogr. Microstruct. Anal. 5(2016), 6, 557–569.
- [5] Sofronis P., Birnbaum H.K.: Hydrogen enhanced localized plasticity: A mechanism for hydrogen related fracture. In: Fatigue and Fracture of Aerospace Structural Materials. American Society of Mechanical Engineers, Aerospace Division (Publication) AD, vol. 36, Publ. by ASME, pp. 15–25, Proc. 1993 ASME Winter Ann. Meet., New Orleans 1993.
- [6] Nguyen T.T., Park J., Kim W.S., Nahm S.H., Beak U.B.: Effect of low partial hydrogen in a mixture with methane on the mechanical properties of X70 pipeline steel, Int. J. Hydrogen Energy 45(2020), 3, 2368–2381.
- [7] Nguyen T.T., Beak U.B., Park J., Nahm S.H, Tak N.: Hydrogen environment assisted cracking in X70 welding heat-affected zone under a high-pressure hydrogengas. Theor. Appl. Fract. Mech. 109(2020), 102746.
- [8] Alvaro A., Olden V., Macadre A., Akselsen O.M.: Hydrogen embrittlement susceptibility of a weld simulated X70 heat affected zone under H2 pressure. Mater. Sci. Eng. A 597(2014), 29–36.
- [9] Golisch G., Genchev G., Wanzenberg E., Mentz J., Brauer H., Muthmann E., Ratke D.: Application of line pipe and hot induction bends in hydrogen gas. J. Pipeline Sci. Eng. 2(2022), 3, 100067.
- [10] Ghosh G., Rostron P., Garg R., Panday A.: Hydrogen induced cracking of pipeline and pressure vessel steels: A review. Eng. Fract. Mech. 199(2018), 609–618.
- [11] Krasovskii A.Y., Lokhman I.V., Orynyak I.V.: Stress-corrosion failures of main pipelines. Strength Mater. 44(2012), 129–143.
- [12] Gangloff R.P., Somerday B.P.: Gaseous Hydrogen Embrittlement of Materials in Energy Technologies. In: Mechanisms, Modelling and Future Developments. Woodhead Publishing, 2012.
- [13] Wang R.: Effects of hydrogen on the fracture toughness of a X70 pipeline steel. Corros. Sci. 51(2009), 12, 2803–2810.
- [14] Olden V., Alvaro A., Akselsen O.M.: Hydrogen diffusion and hydrogen influenced critical stress intensity in an API X70 pipeline steel welded joint – experiments and FE simulations. Int. J. Hydrogen Energy 37(2012), 15, 11474–11486.
- [15] Zhou D., Li T., Huang D., Wu Y., Huang Z., Xiao W., Wang Q., Wang X.: The experiment study to assess the impact of hydrogen blended natural gas on the tensile properties and damage mechanism of X80 pipeline steel. Int. J. Hydrogen Energy46(2021), 10, 7402–7414.
- [16] EN-ISO 3183:2019. Petroleum and natural gas industries - Steel pipe for pipeline transportation system. Tech. rep. Tech. Comm., ISO/TC 67/SC 2 (2019).
- [17] API Spec 5L (46th Edn.), April 2018. Line pipe. Tech. rep., Washington.
- [18] ASME B31.12:2019. Hydrogen piping and pipelines. ASME code for pressure piping. Tech. rep., American Society of Mechanical Engineer, 2020.
- [19] ASME BPVC Section VIII, Division 3. Alternative Rules for Construction of High Pressure Vessels. ASME Boiler and Pressure Vessel Code, Tech. rep., American Society of Mechanical Engineer, 2021.
- [20] Corinth Pipeworks S.A: Hydrogen KIH qualification test report KIH testing of 40′′ ×14.2mm/L485ME SAWH. 2022 (non-published).
- [21] ASTM E1681-03. Standard Test Method for Determining Threshold Stress Intensity Factor for Environment Assisted Cracking of Metallic Materials. ASTM Int. Tech.rep., 2020.
- [22] Uilhoorn F.E.: Comparison of Bayesian estimation methods for modeling flow transients in gas pipelines. J. Nat. Gas Sci. Eng. 38(2017), 159–170.
- [23] Witek M., Uilhoorn F.: Impact of hydrogen blended natural gas on linepack energy for existing high pressure pipelines. Arch. Thermodyn. 43(2022), 3, 111–124.
- [24] Techo R., Tickner R.R., James R.E.: An accurate equation for the computation of the friction factor for smooth pipes from the Reynolds number. J. Appl. Mech. 32(1965),2, 443–443.
- [25] Kreith F., Bohn M.S.: Principles of Heat Transfer (5th Edn.). West Publ., St Paul 1993.
- [26] Kunz O., Wagner W.: The GERG-2008 Wide-Range equation of state for natural gases and other mixtures: An expansion of GERG-2004. J. Chem. Eng. Data 57(2012), 11, 3032–3091.
- [27] Schiesser W.E.: The Numerical Method of Lines: Integration of Partial Differential Equations. Academic Press, San Diego 1991.
- [28] Bank R.E., Coughran W.M., Fichtner W., Grosse E.H., Rose D.J., Smith R.K.: Transient simulation of silicon devices and circuits. IEEE Trans. Electron Devices 32(1985), 10 1992–2007.
- [29] Hosea M.E., Shampine L.F.: Analysis and implementation of TR-BDF2. Appl. Numer. Math. 20(1996), 1, 21–37.
- [30] Shampine L.F., Reichelt M.W.: The MATLAB ODE suite, SIAM J. Sci. Comput.18(1997), 1, 1–22.
- [31] Fukai Y.: The Metal-Hydrogen System: Basic Bulk Properties. Springer Science & Business Media, 2006.
- [32] Kirchheim R., Pundt A.: 25 – Hydrogen in Metals. In: Physical Metallurgy (5th Edn.) (D.E. Laughlin, K. Hono, Eds.), Elsevier, Oxford 2014, 2597–2705.
- [33] Drexler A., Konert F., Sobol O., Rhode M., Domitner J., Sommitsch C., Böllinghaus T.: Enhanced gaseous hydrogen solubility in ferritic and martensitic steels at low temperatures. Int. J. Hydrogen Energy 47(2022), 93, 39639–39653.
- [34] Kirchheim R.: Solubility, diffusivity and trapping of hydrogen in dilute alloys. deformed and amorphous metals – II. Acta Metall. 30(1982), 6, 1069–1078.
- [35] ASTM E399-22. Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIC of Metallic Materials. ASTM Int. Tech. rep., 2022.
- [36] Skjellerudsveen M., Akselsen O., Olden V., Johnsen R., Smirnova A.: Effect of microstructure and temperature on hydrogen diffusion and trapping in X70 grade pipeline steel and its weldments. In: Proc. Eur. Corrosion Conf., Moscow, 13-17 Sept. 2010.
- [37] Uilhoorn F.E.: Dynamic behaviour of non-isothermal compressible natural gases mixed with hydrogen in pipelines. Int. J. Hydrogen Energy 34(2009), 16, 6722– 6729.
- [38] Drexler A., Depover T., Leitner S., Verbeken K., Ecker W.: Microstructural based hydrogen diffusion and trapping models applied to Fe–CX alloys. J. Alloys Compd. 826(2020), 154057.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7dc2b163-2d38-4c89-bba6-9ec2aaab163f