PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Barrel Configurations on the Porosity During HVAF Thermal Spray Ni-Based Amorphous Coatings: Numerical Simulation and Experiment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The relationship between barrel configurations and porosity of a Ni-based amorphous coating (AM) that is fabricated using a high-velocity air fuel (HVAF) process was revealed by both numerical and experimental methods. A computational fluid dynamics model was applied to investigate the gas-flow field and the behavior of in-flight particles with various barrel configurations. It is found that barrel length obviously affects the particle velocity and temperature while it has a slight influence on the particle velocity and temperature. The longer the barrel length (diameter), the higher the flame (particle) velocity and temperature. By analyzing both particle velocity and temperature, the optimal barrel configuration (4E) to achieve low-porosity coatings was predicted. These calculations were experimentally verified by the production of a low-porosity (2.09%) Ni-based AM that was fabricated by HVAF using the predicted optimal barrel configuration.
Twórcy
autor
  • Liaoning Petrochemical University, School of Mechanical Engineering, Fushun, 113001, P.R. China
autor
  • Liaoning Petrochemical University, School of Mechanical Engineering, Fushun, 113001, P.R. China
autor
  • Liaoning Petrochemical University, School of Mechanical Engineering, Fushun, 113001, P.R. China
Bibliografia
  • [1] Z. Zhu, P. Jia, J. Xu, Scripta Mater. 64, 785-788 (2011).
  • [2] A.P. Wang, X.C. Chang, W.L. Hou, Mater. Sci. Eng. A 449, 277-280 (2007).
  • [3] A.P. Wang, T. Zhang, J.Q. Philos. Mag. Lett. 86, 5-11 (2006).
  • [4] G. Huang, L. Qu, T. Lu, Vacuum. 153, 39-42 (2018).
  • [5] L.D. Zhu, P.S. Xue, Q. Lan, G.R. Meng, Y. Ren, Z.C. Yang, P.H. Xu, Z. L., Optics and Laser Technology 138, 106915 (2021).
  • [6] A.H. Dent, A.J. Horlock, D.G. McCartney, Surf. Coat. Technol. 139, 244-250 (2001).
  • [7] H. Choi, S. Yoon, G. Kim, Scripta Mater. 53, 125-130 (2005).
  • [8] Y. Wang, Z.Z. Xing, Q. Luo, Corros. Sci. 98, 339-353 (2015).
  • [9] Q. Lei, Y.P. Wu, S. Hong, Surf. Coat. Technol. 366, 296-302 (2019).
  • [10] N.C. Wu, K. Chen, W.H. Sun, Surf. Eng. 35, 37-45 (2019).
  • [11] J. He, M. Ice, E. Lavernia, J. Therm. Spray Technol. 10, 83-93 (2001).
  • [12] T.C. Hanson, G.S. Settles, J. Therm. Spray Technol. 12, 403-415 (2003).
  • [13] V. Matikainen, H. Koivuluoto, P. Vuoristo, J. Therm. Spray Tech. 27, 680-694 (2018).
  • [14] X. Gao, C. Li, D. Hang, J. Surf. Coat. Technol. 405, 1265-1266 (2021).
  • [15] M.H. Lee, J.Y. Lee, D.H. Bae, Intermetallics. 12, 1133-1137 (2004).
  • [16] H. Tabbara, S. Gu, Surf. Coat. Technol. 204, 676-684 (2009).
  • [17] S. Kamnis, S. Gu, Chem. Eng. Process. 45, 246-253 (2006).
  • [18] D. Cheng, Q. Xu, G. Tapaga, Part I: Gas phase dynamics, Metall. Mater. Trans. A 32, 1609-1620 (2001).
  • [19] S. Gordon, B.J. McBride, (NASA Reference Publication 1311; Cleveland, OH: NASA), Cleveland. Ohio. USA. 1994.
  • [20] M.H. Khan, T. Shamim, Appl. Energy. 130, 853-862 (2014).
  • [21] G. Montavon, C. Coddet, C.C. Berndt, J. Therm. Spray Technol. 7, 229-241 (1998).
  • [22] H. Tabbara, S. Gu, J. Aiche. 11, 3533-3544 (2012).
  • [23] R. Ghafouri-Azar, J. Mostaghimi, S. Chandra, J. Therm Spray Technol. 12, 53-69 (2003).
  • [24] J. Pan, S. Hu, L. Yang, Mater. 96, 370-376 (2016).
  • [25] H.F. Voggenreiter, H. Huber, H.J. Spies, Materials Park (OH): ASM International 1997.
Uwagi
This work was supported by Educational Commission of Liaoning Province of China under Grant No. L2020021; Fushun Revitalization Talents Program under Grant No. FSYC202107011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7dc15667-11db-4eac-87e4-ba7aac9fc521
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.