PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A PCM-water heat exchanger with polymeric hollow fibres for latent heat thermal energy storage: a parametric study of discharging stage

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a theoretical parametric study into latent heat thermal energy storage (LHTES) employing polymeric hollow fibres embedded in a phase change material (PCM). The polymeric hollow fibres of five inner diameters between 0.5 mm and 1.5 mm are considered in the study. The effectiveness-NTU method is employed to calculate the thermal performance of a theoretical LHTES unit of the shell-and-tube design. The results indicate that the hollow fibres embedded in a PCM can mitigate the drawback of low thermal conductivity of phase change materials. For the same packing fraction, the total heat transfer rates between the heat transfer fluid and the PCM increase with the decreasing diameter of the hollow fibres. This increase in the heat transfer rate and thus the efficiency of the heat exchange to some extent compensate for the energy consumption of the pump that also increases with the decreasing fibre diameter.
Rocznik
Strony
1285--1295
Opis fizyczny
Bibliogr. 26 poz., rys,., tab.
Twórcy
autor
  • Brno University of Technology, Department of Thermodynamics and Environmental Engineering, Brno, Czech Republic
autor
  • Brno University of Technology, Department of Thermodynamics and Environmental Engineering, Brno, Czech Republic
autor
  • Brno University of Technology, Department of Thermodynamics and Environmental Engineering, Brno, Czech Republic
autor
  • Brno University of Technology, Heat Transfer and Fluid Flow Laboratory, Brno, Czech Republic
Bibliografia
  • 1. Aadmi M., Karkri M., El Hammouti M., 2015, Heat transfer characteristics of thermal energy storage for PCM (phase change material) melting in horizontal tube: Numerical and experimental investigations, Energy, 85, 339-352, DOI: 10.1016/j.energy.2015.03.085
  • 2. Al-Abidi A.A., Mat S., Sopian K., Sulaiman M.Y., Mohammad A.T., 2014, Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins, Energy and Buildings, 68, 33-41, DOI: 10.1016/j.enbuild.2013.09.007
  • 3. Belusko M., Halawa E., Bruno F., 2012, Characterising PCM thermal storage systems using the effectiveness-NTU approach, International Journal of Heat and Mass Transfer, 55, 13/14, 3359-3365, DOI: 10.1016/j.ijheatmasstransfer.2012.03.018
  • 4. Celata G.P., Cumo M., Marconi V., McPhail S.J., Zummo G., 2006, Microtube liquid single-phase heat transfer in laminar flow, International Journal of Heat and Mass Transfer, 49, 19/20, 3538-3546, DOI: 10.1016/j.ijheatmasstransfer.2006.03.004
  • 5. Daguenet-Frick X., Gantenbein P., Frank E., Fumey B., Weber R., 2015, Development of a numerical model for the reaction zone design of an aqueous sodium hydroxide seasonal thermal energy storage, Solar Energy, 121, 17-30, DOI: 10.1016/j.solener.2015.06.009.
  • 6. Dutkowski K., 2008, Experimental investigations of Poiseuille number laminar flow of water and air in minichannels, International Journal of Heat and Mass Transfer, 51, 25/26, 5983-5990, DOI: 10.1016/j.ijheatmasstransfer.2008.04.070
  • 7. Herwig H., Hausner O., 2003, Critical view on new results in micro-fluid mechanics: an example, International Journal of Heat and Mass Transfer, 46, 5, 935-937, DOI: 10.1016/S0017- 9310(02)00306-X
  • 8. Hu X., Patnaik S.S., 2014, Modeling phase change material in micro-foam under constant temperature condition, International Journal of Heat and Mass Transfer, 68, 677-682, DOI: 10.1016/j.ijheatmasstransfer.2013.09.054
  • 9. Incropera F.P., DeWitt D.P., Bergman T.L., Lavine A.S., 2006, Fundamentals of Heat and Mass Transfer, Wiley, New York
  • 10. Javani N., Dincer I., Naterer G.F., 2014, New latent heat storage system with nanoparticles for thermal management of electric vehicles, Journal of Power Sources, 268, 718-727, DOI: 10.1016/j.jpowsour.2014.06.107
  • 11. Jegadheeswaran S., Pohekar S.D., 2009, Performance enhancement in latent heat thermal storage system: A review, Renewable and Sustainable Energy Reviews, 13, 9, 2225-2244, DOI: 10.1016/j.rser.2009.06.024
  • 12. Kandlikar S.G., Grande W.J., 2003, Evolution of microchannel flow passages: thermohydraulic performance and fabrication technology, Heat Transfer Engineering, 24, 1, 3-17, DOI: 10.1080/01457630304040
  • 13. Kauranen P., Elonen T., Wikstrom L., Heikkinen J., Laurikko J., 2010, Temperature optimisation of a diesel engine using exhaust gas heat recovery and thermal energy storage (diesel engine with thermal energy storage), Applied Thermal Engineering, 30, 6/7, 631-638, DOI: 10.1016/j.applthermaleng.2009.11.008
  • 14. Kim K., Choi K., Kim Y., Lee K., Lee K., 2010, Feasibility study on a novel cooling technique using a phase change material in an automotive engine, Energy, 35, 1, 478-484, DOI: 10.1016/j.energy.2009.10.015
  • 15. Kozak Y., Rozenfeld T., Ziskind G., 2014, Close-contact melting in vertical annular enclosures with a non-isothermal base: Theoretical modeling and application to thermal storage, International Journal of Heat and Mass Transfer, 72, 114-127, DOI: 10.1016/j.ijheatmasstransfer.2013.12.058
  • 16. Oró E., de Gracia A., Castell A., Farid M.M., Cabeza L.F., 2012, Review on phase change materials (PCMs) for cold thermal energy storage applications, Applied Energy, 99, 513-533, DOI: 10.1016/j.apenergy.2012.03.058
  • 17. Pinnau S., Breitkopf C., 2015, Determination of thermal energy storage (TES) characteristics by Fourier analysis of heat load profiles, Energy Conversion and Management, 101, 343-351, DOI: 10.1016/j.enconman.2015.05.055
  • 18. Raam Dheep G., Sreekumar A., 2014, Influence of nanomaterials on properties of latent heat solar thermal energy storage materials – A review, Energy Conversion and Management, 83, 133-148, DOI: 10.1016/j.enconman.2014.03.058
  • 19. Sharma A., Tyagi V.V., Chen C.R., Buddhi D., 2009, Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews, 13, 2, 318-345, DOI: 10.1016/j.rser.2007.10.005
  • 20. Song L., Li B., Zarkadas D., Christian S., Sirkar K., 2010, Polymeric hollow-fiber heat exchangers for thermal desalination processes, Industrial and Engineering Chemistry Research, 49, 23, 11961-11977, DOI: 10.1021/ie100375b
  • 21. Tay N.H.S., Belusko M., Bruno F., 2012, An effectiveness-NTU technique for characterising tube-in-tank phase change thermal energy storage systems, Applied Energy, 91, 1, 309-319, DOI: 10.1016/j.apenergy.2011.09.039
  • 22. Tullius J.F., Tullius T.K., Bayazitoglu Y., 2012, Optimization of short micro pin fins in minichannels, International Journal of Heat and Mass Transfer, 55, 15/16, 3921-3932, DOI: 10.1016/j.ijheatmasstransfer.2012.03.022
  • 23. Zalba B., Marin J.M., Cabeza L.F., Mehling H., 2003, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Applied Thermal Engineering, 23, 3, 251-283, DOI: 10.1016/S1359-4311(02)00192-8
  • 24. Zarkadas D.M., Sirkar K.K., 2004, Polymeric hollow fiber heat exchangers: An alternative for lower temperature applications, Industrial and Engineering Chemistry Research, 43, 25, 8093-8106, DOI: 10.1021/ie040143k
  • 25. Zhao C.Y., Lu W., Tian Y., 2010, Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs), Solar Energy, 84, 8, 1402-1412, DOI: 10.1016/j.solener.2010.04.022
  • 26. Zivkovic B., Fujii I., 2001, An analysis of isothermal phase change of phase change material within rectangular and cylindrical containers, Solar Energy, 70, 1, 51-61, DOI: 10.1016/S0038- 092X(00)00112-2
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7dc0a4cf-ea08-4a87-8bd8-8f55f0561c06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.