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An exponential observer and a controller
for a class of nonlinear systems

MOHAMED ALI HAMMAMI, MOHAMED ZRIBI and JALEL KALLEL

In this paper, we study the observer design problem for a class of nonlinear systems. Specif-
ically, we design an exponential observer for a separately excited DC motor. Moreover, a stabi-
lizing controller is designed for the system to ensure the exponential stability of the solutions
toward their desired values. Simulations results show that proposed observer is able to recon-
struct the states of the system. In addition, the simulation results indicate that the designed
controller works well.
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1. Introduction

The design of observer for dynamical systems modeled by nonlinear differential equa-
tions is generally a difficult task due to the presence of nonlinearities. The usual re-
quirements are the global Lipschitz condition ( [1], [2], [3], [4], [5]) or the existence
of change of coordinates which transforms the system into the desired observer form
( [6]). Several researchers have studied for the control of DC motors by using different
techniques ( [7], [8], [9]). The stability problem of such systems is also considered in
terms of ultimate bounded solutions ( [10], [11], [12]). This approach is very general
and powerful although there is an inherent difficulty associated with the selection of a
suitable Lyapunov function.

The objective of this paper is to present an observer design for the separately excited
DC motor. Furthermore, stability of the system is studied where a controller which guar-
antees the global and exponential stability of the trajectories of the system is designed.

The paper is organized as follows. The problem under consideration is formulated in
section 2. The observer design for the DC motor is detailed in section 3. The speed cont-
roller design for the motor is presented in section 4. The simulation results are presented
and discussed in section 5. Finally, some concluding remarks are given in section 6.
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2. Problem formulation

A separately excited DC motor can be described using the following set of ordinary
differential equations: 

dia
dt

=
1
La

(va −Raia −Kmi f w)

di f

dt
=

1
L f

(v f −R f i f )

dw
dt

=
1
Jm

(Kmiai f −Bmw−Tl)

where ia and i f are the armature and field currents; w is the rotor speed. The voltages va
and v f are the armature and field voltages. The resistances Ra and R f are the armature
and field resistances; La and L f are the armature and field inductances. The constant
Km is the motor torque constant, Jm is the inertia of the motor, and Bm is the damping
coefficient. The load torque is Tl .

For ease of presentation, we define the following constants:

K1 =−Ra

La
, K2 =−Km

La
, K3 =−

R f

L f
, K4 =

Km

Jm
, K5 =−Bm

Jm
.

Note that, Ki < 0 for i = 1,2,3,5. Also, denote the state variables x1, x2 and x3 such that:

x1 = ia x2 = i f x3 = w.

Therefore, the equations describing a separately excited DC motor can be written as:

ẋ1 = K1x1 +K2x2x3 +
1
La

va

ẋ2 = K3x2 +
1

L f
v f

ẋ3 = K4x1x2 +K5x3 −
1
Jm

Tl

(1)

For this class of control systems, we can design an observer to estimate the states of
the system. Also, we can design a stabilizing controller that rends the system globally
and exponentially stable. It should be noted that the voltage va and v f in (1) are the inputs
of the system. Also, note that the design of the controller will be performed without
taking into account the load torque; a load observer can be designed to estimate the load
of the system [8].
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3. Observer design

In this section of the paper, we are interested in designing an observer to the follow-
ing class of input-output systems:

ẋ1 = K1x1 +K2x2x3 +
1
La

va

ẋ2 = K3x2 +
1

L f
v f

ẋ3 = K4x1x2 +K5x3 −
1
Jm

Tl

y = x1

(2)

It is well known that, generally, not all the states of a system are available for di-
rect measurement. Therefore, the unmeasurable states must be estimated since they are
needed for feedback. The observer is a dynamical system which is expected to recon-
struct the states of the system. Our objective is to design a state reconstructor for the
system (2) such that the global exponential convergence to zero of the resulting error
system can be guaranteed.

Before presenting the result, we introduce the following definition.

Definition 1 The system (2) is exponentially state reconstructible if there exists a state
observer ˙̂x = G(x̂,y,u), where u is the input of the system, and λ and γ are positive
numbers such that:

∥e(t)∥= ∥x̂(t)− x(t)∥¬ λ(∥e(0)∥)e−γt , ∀t  0. (3)

Here, x̂(t) = [x̂1(t) x̂2(t) x̂3(t)]T are the estimates of the states x(t) = [x1(t) x2(t) x3(t)]T .
For design purposes, we assume that the load torque is zero. Therefore, the equations

of the system can be written as:

ẋ1 = K1x1 +K2x2x3 +
1
La

va

ẋ2 = K3x2 +
1

L f
v f

ẋ3 = K4x1x2 +K5x3

y = x1

(4)

We propose to use the following state observer:

˙̂x1 = K1x̂1 +K2x̂2x̂3 +L1(x1 − x̂1)+
1
La

va

˙̂x2 = K3x̂2 +
1

L f
v f

˙̂x3 = K4x1x̂2 +K5x̂3

(5)
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where L1 is a positive scalar which will be chosen later. The system (5) will produce x̂(t)
which is the estimate of the state x(t).

We present the following theorem for the state reconstruction of system (4).

Theorem 1 The system (5) is an exponential observer for (4).

Proof Define the following estimation errors:

e1(t) = x̂1 − x1

e2(t) = x̂2 − x2

e3(t) = x̂3 − x3

(6)

It is clear from (4) - (6) that e2(t) satisfies the following differential equation:

ė2(t) = K3e2(t). (7)

Thus, by integrating the above equation from zero to t and denoting the initial condition
of e2(t) by e2(0), one gets:

e2(t) = e2(0)eK3t . (8)

Therefore, it can be concluded that e2(t) converges exponentially to zero as t tends to
infinity since K3 is negative.

Also, it is clear from (4) - (6) that the error e3(t) satisfies the following differential
equation:

ė3(t) = K5e3(t)+K4ye2(t). (9)

Using equation (8), the above equation can be written as:

ė3(t) = K5e3(t)+K4ye2(0)eK3t . (10)

By integrating the above equation from zero to t and denoting the initial condition
of e3(t) by e3(0) , one gets:

e3(t) = e3(0)eK5t +K4e2(0)
t∫

0

y(τ)eK5(t−τ)eK3τdτ. (11)

The constants K3 and K5 are parameters of the motor and they are such that K3 ̸= K5.
Also, note that since the motor is properly controlled, the output y(t) is bounded;

this means that there exist a positive scalar By such that |y|< By. Thus,

|e3(t)|¬ |e3(0)|eK5t +ByK4|e2(0)|
1

|K3 −K5|
|eK3t − eK5t |. (12)

Since eK3t together with eK5t tend to zero as t tends to infinity because K3 < 0 and K5 < 0,
then it can be concluded that the error e3(t) tends exponentially to zero as t tends to
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infinity. Therefore, there exist a time T > 0 and a positive constant λ which depends on
T , By, K4 |e2(0)| and |e3(0)|, such that:

|e3(t)|¬ λ3e
1
2 sup(K3,K5)t . (13)

Therefore, it can be concluded that the error e3(t) converges exponentially to zero as t
tends to infinity.

Using (4) - (6), one can deduce that the error e1(t) satisfies the following differential
equation:

ė1(t) = (K1 −L1)e1 +K2(x̂2x̂3 − x2x3)
(14)

= (K1 −L1)e1 −K2e2e3 +K2x̂2e3 +K2x̂3e2.

By integrating the above equation from zero to t and denoting the initial condition of
e1(t) by e1(0) , one can write:

e1(t) = e1(0)e(K1−L1)t

(15)

+K2

t∫
0

(x̂2(s)e3(s)+ x̂3(s)e2(s)− e2(s)e3(s))e(K1−L1)(t−s)ds.

Note that, we shall choose L1 such that K1 −L1 < 0. Moreover, note that from (5)
the components x̂2 and x̂3 are bounded since the errors e2(t) and e3(t) converge to zero
exponentially and since the system is properly controlled. Hence, there exist positive
constants M2 and M3 such that,

|x̂2|¬M2 and |x̂3|¬M3. (16)

Therefore, since the errors e2(t) and e3(t) converge to zero exponentially, it can be con-
cluded that e1(t) will also converge to zero as t tends to infinity. Indeed, taking into
account the above expressions and the estimations (8) and (13), it follows that:

|e1(t)| ¬ |e1(0)|e(K1−L1)t

+|K2|M2λ3e(K1−L1)t
t∫

0

e(
1
2 sup(K3,K5)−(K1−L1))sds

(17)

+|K2|M3|e2(0)|e(K1−L1)t
t∫

0

e(K3−(K1−L1))sds

+|K2||e2(0)|λ3e(K1−L1)t
t∫

0

e(K3+
1
2 sup(K3,K5)−(K1−L1))sds.
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Hence,

|e1(t)| ¬ |e1(0)|e(K1−L1)t

+M2λ3|K2|
1

|1
2 sup(K3,K5)− (K1 −L1)|

|e(
1
2 sup(K3,K5)t − e(K1−L1))t |

+M3|K2||e2(0)|
1

|K3 − (K1 −L1)|
|eK3t − e(K1−L1))t | (18)

+λ3|K2||e2(0)|
|e(K3+

1
2 sup(K3,K5)t − e(K1−L1))t |

|K3 +
1
2 sup(K3,K5)− (K1 −L1)|

.

Notice that L1 is chosen such that K1 − L1 < 0, K3 − (K1 − L1) ̸= 0 and K3 +
1
2 sup(K3,K5)−(K1−L1) ̸= 0. This is possible for L1 small enough. Hence, since K3 < 0,
sup(K3,K5)< 0 and K1 −L1 < 0, then there exist a time T̃ > 0, λ1 > 0 and K < 0, such
that

|e1(t)|¬ λ1e−Kt for all t  T̃ . (19)

Therefore, it can be concluded that the error e1(t) converges exponentially to zero as t
tends to infinity.

Consequently, we conclude that the system (5) is a suitable state observer which can
be used to reconstruct the states of the system (4).

4. Controller Design

This section deals with the design of a controller for the DC motor such that the shaft
of the motor rotates to its desired speed.

Let x1d , x2d and x3d be the desired constant values of the states x1, x2 and x3 respec-
tively. Clearly, the following condition should be satisfied at steady state:

K4x1dx2d +K5x3d = 0.

In the following, we will design a state feedback controller for the motor while as-
suming that all the states of the system are available for feedback.

Define the regulation errors ē1, ē2 and ē3 as follows:

ē1(t) = x1 − x1d

ē2(t) = x2 − x2d (20)
ē3(t) = x3 − x3d

Also, let g1 and g2 be positive scalars.
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Theorem 2 The control law:

va = La(−K1x1d −K2x2x3 −g1ē1)
(21)

v f = L f (−K3x2d −g2ē2)

when applied to the the DC motor model given by (4) guarantees the exponential con-
vergence of the states of the motor to their desired values as t tends to infinity.

Proof The application of the control law given by (22) into the dynamics of the DC
motor given by (4) leads to the following closed loop dynamics:

ẋ1 = K1x1 +K2x2x3 −K1x1d −K2x2x3 −g1ē1

ẋ2 = K3x2 −K3x2d −g2ē2 (22)
ẋ3 = K4x1x2 +K5x3

Taking the time derivative of (20) and using equations (22) and the fact that

K4x1dx2d +K5x3d = 0,

one obtains:

˙̄e1 = (K1 −g1)ē1

˙̄e2 = (K3 −g2)ē2 (23)
˙̄e3 = K5ē3 +K4ē1ē2 +K4x2d ē1 +K4x1d ē2

Let ē1(0), ē2(0) and ē3(0) be the initial values of ē1(t), ē2(t) and ē3(t) respectively.
Also, define the constants ri (i = 1, ...,5) such that

r1 = K1 −g1

r2 = K3 −g2

r3 = K4ē1(0)ē2(0)
r4 = K4x2d ē1(0)
r5 = K4x1d ē2(0).

Note that r1 and r2 are negative constants because K3 and K5 are negative system param-
eters and g1 and g2 are positive design parameters.

The solution of the first equation of (23) is:

ē1(t) = ē1(0)er1t (24)

The solution of the second equation of (23) is:

ē2(t) = ē2(0)er2t (25)
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Using (24) and (25), the third equation of (23) can be written as:

˙̄e3(t) = K5ē3(t)+ r3e(r1+r2)t + r4er1t + r5er2t (26)

By integrating the above equation from zero to t, one gets:

ē3(t) = ē3(0)eK5t +

t∫
0

eK5(t−τ)(r3e(r1+r2)τ + r4er1τ + r5er2τ)dτ

= ē3(0)eK5t +
r3

−K5 + r1 + r2
(e(r1+r2)t − eK5t)+

r4

−K5 + r1
(er1t − eK5t)

+
r5

−K5 + r2
(er2t − eK5t) (27)

= r6eK5t +
r3

−K5 + r1 + r2
e(r1+r2)t +

r4

−K5 + r1
er1t +

r5

−K5 + r2
er2t

where,
r6 = ē3(0)−

r3

−K5 + r1 + r2
− r4

−K5 + r1
− r5

−K5 + r2
.

Using equations (24), (25) and (28), it can be concluded that the errors e1(t), e2(t)
and e3(t) converge to zero exponentially as t tends to infinity.

We conclude that the controller given by (22) when applied to the the DC motor
model given by (4), guarantees the exponential convergence of the states of the motor to
their desired values as t tends to infinity.

5. Simulation Results

A separately excited permanent magnet DC motor is used to test the proposed control
scheme and the proposed observer. The used motor (an MV1042-225 motor) has the
specifications given in Table 1 and Table 2.

Table 1: Values of the parameters of the DC motor

Parameter Value

Ra 3.5 Ω
La 0.0432 H
R f 233 Ω
L f 25.5 H
Km 1.9469
Bm 0.0025
Jm 0.0017
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Table 2: Ratings of the DC motor

Parameter Rating

Rated armature voltage 220 Volt
Rated field voltage 220 Volt

Rated power 3 KW
Rated speed 1400 RPM

We simulated the performances of the closed loop system for three different cases.

Figure 1. The plot of the rotor speed w versus time (case 1)

Figure 2. The plot of the armature voltage va versus time (case 1)

Case 1.
At first, we simulated the performance of the system when the controller given by

(21) is used and assuming that all the states of the system are available for feedback. The
simulation results are shown in Figure 1-3. Figure 1 shows the plot of the rotor speed w
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Figure 3. The plot of the field voltage v f versus time (case 1)

versus time. It is clear from this figure that the motor rotates to its desired speed (1400
rpm) within 5 seconds. Also, Figure 2 and Figure 3 indicates that the armature voltage
and the field voltage stay within a reasonable range. Therefore it can be concluded that
the proposed control scheme works well.

Figure 4. The plots of the rotor speed versus time (case 2)

Case 2.
Next, we simulated the performance of the system when the controller given by

(21) is used and assumed that all the states are available for feedback. In addition and
to check the workability of the designed observer, we simulated the designed observer
given by (4). However, the estimates obtained from the observer were not used for
feedback. The simulation results are shown in Figure 4-6. Figure 4 shows the plots of
the armature current and its estimate versus time. Figure 5 shows the plots of the field
current and its estimate versus time. Note that the actual currents are plotted using
continuous lines while the estimated currents are plotted using dashed lines. Figure 6
shows the plots of the rotor speed and its estimate versus time.Again, the actual speed is
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Figure 5. The plots of the armature current ia versus time (case 2)

Figure 6. The plots of the field current i f versus time (case 2)

plotted using a continuous line while the estimated speed is plotted using a dashed line.
It is clear that the motor rotates to its desired speed (1400 rpm) within 5 seconds. Also,
it is clear from these figures that the estimates obtained using the designed observer
converge to the states of the system. Therefore it can be concluded that the proposed
observer works well and it can be used to reconstruct the states of the system.

Case 3.
Finally, we simulated the performance of the system when the controller given by

(21) is used in conjunction with the designed observer given by (4) (i.e., we used an ob-
server based controller; this means that the estimates of the states are used for feedback).
The simulation results are shown in Figure 7-11. It is clear that the motor rotates to its
desired speed (1400 rpm) within 5 seconds. Also, the armature and field currents con-
verge to their desired values. Figure 10 and Figure 11 indicates that the armature voltage
and the field voltage stay within a reasonable range. Therefore it can be concluded that
the proposed observer-based controller works well.
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Figure 7. The plot of the rotor speed w versus time (case 3)

Figure 8. The plot of the armature current ia versus time (case 3)

Figure 9. The plot of the field current i f versus time (case 3)
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Figure 10. The plot of the armature voltage va versus time (case 3)

Figure 11. The plot of the field voltage v f versus time (case 3)

6. Conclusion

This paper deals with the design of an exponential observer as well as the design
of a control scheme for the speed control of a separately excited DC motor. At first, an
exponential observer is designed to reconstruct the unmeasurable states of the system.
Then, a controller which guarantees the exponential convergence of the states of the
system to their desired values is designed. Simulation results indicate that the proposed
controller and the proposed observer work well. Moreover, simulation results show that
the proposed observer-based control scheme gave good results.
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Future work will address the implementation of the proposed observer and the pro-
posed controller on an experimental setup. Robustness to the uncertainties of the param-
eters of the systems as well as robustness to the changes in the load will also be studied.

References

[1] F.E. THAU: Observing the state of non-linear dynamic systems. Int. Journal of
Control, 18 (1973), 471-479.

[2] S.R. KOU, D.L. ELLIOT and T.J. TARN: Exponential observer for nonlinear dy-
namic systems. Inform. Control, 29 (1975), 204-216.

[3] R. RAJAMANI: Observers for Lipschitz nonlinear systems. IEEE Trans. on Auto-
matic Control, 43(3), (1998), 397-401.

[4] M.A. HAMMAMI: Global convergence of a control system by means of an ob-
server. J. of Optimization Theory and Applications, 108(2), (2001), 377-388.

[5] M.A. HAMMAMI: Global stabilization of a certain class of dynamical systems
using state detection. Applied Mathematics Letters, 14 (2001), 913-919.

[6] J.P. GAUTHIER, H. HAMMOURI and S. OTHMAN: A simple observer for nonlin-
ear system applications to bioreactors. IEEE Trans. on Automatic Control, 37(6),
(1992), 875-880.

[7] W. MITKOWSKI and J. BARANOWSKI: Observer design for series DC motor multi
output approach. Int. Conf. Fund. Elect. Circuit Theory, IC-SPETO, (2007).

[8] M. ZRIBI and A. AL-ZAMEL: Field-Weakening control of a separately excited DC
motor. Mathematical Problems in Engineering, ID 58410 (2007).

[9] M. ZRIBI and M. ALRIFAI: Robust controllers for variable reluctance motors.
Math. Probl. Eng, 2 (2005), 195-214.

[10] M. CORLESS and G. LEITMANN: Bounded controllers for robust exponential con-
vergence. J. Optim. Theory Appl, 76(1), (1993), 1-12.

[11] M. CORLESS, F. GAROFALO and G. LEITMANN: Guaranteeing ultimate bound-
edness and exponential rate of convergence for a class of uncertain systems. Ro-
bustness in Identification and Control, Appl. Inform. Tech., Plenum, New York,
(1989), 293-301.

[12] H. KHALIL. Nonlinear Systems. Prentice Hall, New Jersy, 3rd edition, 2002.

Unauthenticated | 89.67.242.59
Download Date | 5/12/13 6:18 PM




