PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studies on the Effect of Accelerated Ageing on Structural, Physico-Mechanical and Ballistic Properties of Hybrid Silicone-Ceramics Composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper was to study and analyze methods of evaluating the service ability and lifespan of ballistic armors made of a hybrid silicone-ceramic (HSC) composites. Experimental tests with accelerated ageing were conducted on the composite ballistic armors in a laboratory to predict and analyze their durability: changes in ballistic performance, as well as physical, and structural properties occurring due to simulated usage conditions. It was proved that despite the changes which took place at the molecular level in the HSC composite materials, accelerated aging processes do not affect the fragmentation resistance level of ballistic HSC inserts.
Rocznik
Strony
31--41
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Institute of Security Technologies “MORATEX”, Marii Sklodowskiej-Curie 3 Street, Lodz 90-505, Poland
  • Institute of Security Technologies “MORATEX”, Marii Sklodowskiej-Curie 3 Street, Lodz 90-505, Poland
  • Institute of Security Technologies “MORATEX”, Marii Sklodowskiej-Curie 3 Street, Lodz 90-505, Poland
Bibliografia
  • 1. Luo T., Chao Z., Du S., Jiang L., Chen S., Zhang R., Han H., Han B., Wang Z., Chen, G., Mei Y. A Novel Multi-Scale CeramicBased Array (SiCb+B4Cp)/7075Al as Promising Materials for Armor Structure. Materials 2023; 16, 5796.
  • 2. Yang R., Li K., Yin L., Ren K., Cheng Y., Li T., Fu J., Zhao T., Chen Z., Yang J. Study on the Penetration Power of ZrO2 Toughened Al2O3 Ceramic Composite Projectile into Ceramic Composite Armor. Materials 2022; 15, 2909.
  • 3. Fejdyś M., Kośla K., Kucharska-Jastrząbek A., Łandwijt M. Influence of ceramic properties on the ballistic performance of the hybrid ceramic–multi-layered UHMWPE composite armour. J. Aust. Ceram. Soc. 2021; 57, 149–161.
  • 4. Chen Z., Xu Y., Li M., Li B., Song W., Xiao L., Cheng Y., Jia S. Investigation on Residual Strength and Failure Mechanism of the Ceramic/UHMWPE Armors after Ballistic Tests. Materials 2022; 15, 901.
  • 5. Cegła M. Special ceramics in multilayer ballistic protection systems. Issues Armament Technol. 2018; 147, 63–74.
  • 6. Grujicic M., Pandurangan B., Zecevic U., Koudela K. L., Cheeseman B. A. Ballistic Performance of Alumina/S-2 glass reinforced polymer-matrix composite hybrid lightweight armor against armor piercing (AP) and non-AP projectiles. Multidiscip. Model. Mater. Struct. 2007; 3, 287–312.
  • 7. Hogan J. D., Farbaniec L., Mallick D., Domnich V., Kuwelkar K., Sano T., McCauley J. W., Ramesh K. T. Fragmentation of an advanced ceramic under ballistic impact: Mechanisms and microstructure. Int. J. Impact Eng. 2017; 102, 47–54.
  • 8. Magier M. Methods of estimating the armor penetration depth by kinetic projectiles. Issues Armament Technol. 2007; 101, 103–115.
  • 9. Ding L., Gu X., Shen P., Kong X. Ballistic Limit of UHMWPE Composite Armor under Impact of Ogive-Nose Projectile. Polymers 2022; 14, 4866.
  • 10. Nair A. N., Sundharesan S., Al Tubi M. A. A. Kevlar-based Composite Material and its Applications in Body Armour: A Short Literature Review. IOP Conf. Ser.: Mater. Sci. Eng. 2020; 987, 012003.
  • 11. Kang T. J., Kim C. Energy-Absorption Mechanisms in Kevlar Multiaxial WarpKnit Fabric Composites Under Impact Loading. Compos. Sci. Technol. 2000; 60, 773–784.
  • 12. Min S., Chen X., Chai Y., Lowe T. Effect of Reinforcement Continuity on the Ballistic Performance of Composites Reinforced with Multiply Plain Weave Fabric. Compos. B Eng. 2016; 90, 30–36.
  • 13. Nurazzi N. M., Asyraf M. RM., Khalina A., Abdullah N., Aisyah H.A., Rafiqah S. A., Sabaruddin F. A., Kamarudin S. H., Norrrahim M. N. F., Ilyas R. A., Sapuan S. M. A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers 2021; 13, 646.
  • 14. Varma T. V., Sarkat S. Designing polymer metamaterial for protective armor: a coarse-grained formulation. Meccanica. 2020; 56, 383-392.
  • 15. Si P., Liu Y., Yan J., Bai F., Huang F. Ballistic Performance of Polyurea-Reinforced Ceramic/Metal Armor Subjected to Projectile Impact. Materials 2022; 15, 3918.
  • 16. Colombo P., Zordan F., Medvedovski E. Ceramic–polymer composites for ballistic protection. Adv. Appl. Ceram. 2006; 105, 78-83.
  • 17. Wiśniewski A. B., Pacek D. B., Żochowski P., Wierzbicki Ł., Kozłowska J., Zielińska D., Olszewska, K., Grabowska G., Błaszczyk J., Pawłowska A., Wałęza J. Elastic armour, Patent no. PL224825 (B1), 2017.
  • 18. Kośla K., Kubiak P., Fejdyś M., Olszewska K., Łandwijt M., Chmal-Fudali E. Preparation and Impact Resistance Properties of Hybrid Silicone-Ceramics Composites. Appl. Sci. 2020; 10, 9098.
  • 19. Tang M., Huang G., Zhang H., Liu Y., Chang H., Song H., Xu D., Wang Z. Dependences of Rheological and Compression Mechanical Properties on Cellular Structures for Impact-Protective Materials. ACS Omega 2017, 2, 2214−2223.
  • 20. Poron® XRDTM Extreme Impact protection – Physical Properties. https://www.algeos.com.au/pdfs/PORONXRDDataSheet.pdf [accessed on: 14.12.2023]
  • 21. Venkatraman P. D., Tyler D. J., A critical review of impact resistant materials used in sportswear clothing. International conference in Advances in Textiles, Machinery, Nonwovens and Technical Textiles, ATNT, Coimbatore, India, 2011.
  • 22. Bhagavathula K. B., Azar A., Ouellet S., Satapathy S., Dennison C. R., Hogan J. D. High Rate Compressive Behaviour of a Dilatant Polymeric Foam. J. Dyn. Behav. Mater. 2018; 4, 573-585.
  • 23. Zuckerman S. L., Reynolds B. B., YengoKahn A. M., Kuhn A. W., Chadwell J. T., Goodale S. E., Lafferty C. E., Langford K. T., McKeithan L. J., Kirby P., Solomon G. S. A football helmet prototype that reduces linear and rotational acceleration with the addition of an outer shell. J Neurosurg. 2019; 130, 1634–1641.
  • 24. Cushioning and impact absorbing foam. https://www.trelleborg.com/appliedtechnologies/products-and-solutions/advanced-energy-control-materials/confor-cushioning-and-impact-absorbing [accessed on: 15.12.2023]
  • 25. Tsinas Z., Orski S. V., Bentley V. R.C., Gonzalez Lopez L., Al-Sheikhly M., Forster A. L. Effects of Thermal Aging on Molar Mass of Ultra-High Molar Mass Polyethylene Fibers. Polymers 2022; 14, 1324.
  • 26. Yang X., Jia N. Hygrothermal effect on high-velocity impact resistance of woven composites. Def. Technol. 2022; 18, 823- 833.
  • 27. Liu Y., Wu Y. Influence of hydrothermal aging on the mechanical performance of foam core sandwich panels subjected to low-velocity impact. Sci. Eng. Compos. Mater. 2022; 29, 9–22.
  • 28. Kośla K., Łandwijt M., Miklas M., Fejdyś M. Influence of the Accelerated Aging Process on the Fragment-Resistant Properties of Para-Aramid Body Armor. Materials 2022; 15, 6492.
  • 29. Engelbrecht-Wiggans A., Burni F., Guigues E., Jiang S., Huynh T. Q., Tsinas Z., Jacobs D., Forster A. L. Effects of temperature and humidity on high-strength p-aramid fibers used in body armor. Text. Res. J. 2020; 90, 2428-2440.
  • 30. Engelbrecht-Wiggans A., Tsinas Z., Krishnamurthy A., Forster A. L. Effect of Aging on Unidirectional Composite Laminate Polyethylene for Body Armor. Polymers 2023; 15, 1347.
  • 31. Fejdyś M., Kucharska-Jastrząbek A., Kośla K. Effect of Accelerated Ageing on the Ballistic Resistance of Hybrid Composite Armour with Advanced Ceramics and UHMWPE Fibers. Fibres Text. East. Eur. 2020; 28, 71-80.
  • 32. Madej-Kiełbik L., Kośla K., Zielińska D., Chmal-Fudali E., Maciejewska M. Effect of Accelerated Ageing on the Mechanical and Structural Properties of the Material System Used in Protectors. Polymers 2019; 11, 1263.
  • 33. Fejdyś M., Cichecka M., Łandwijt M., Struszczyk M.H. Prediction of the Durability of Composite Soft Ballistic Inserts. Fibres Text. East. Eur. 2014; 22, 81–89.
  • 34. Brounstein Z., Zhao J., Geller D., Gupta N., Labouriau A. Long-Term Thermal Aging of Modified Sylgard 184 Formulations. Polymers 2021; 13, 3125.
  • 35. Orn A. Degradation Studies on polydimethylsiloxane, Master thesis, Laboratory of organic chemistry, Faculty of Science and Engineering, Abo Akademi Univerity, Finland, 2019.
  • 36. Dobrowolska E. P. “Selection of the type and the proportion of chain extenders macromolecules polycarbonate-urethane from isophorone isocyanate” Master Thesis, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 2013.
  • 37. Liu S. H., Shen M. Y., Kuan C.F., Kuan H. C., Ke C. Y., Chiang C. L. Improving Thermal Stability of Polyurethane through the Addition of Hyperbranched Polysiloxane. Polymers 2019; 11, 697.
  • 38. Mikulčić H,. Jin Q., Stančin H., Wang X., Li S., Tan H, .Duić N. Thermogravimetric Analysis Investigation of Polyurethane Plastic Thermal Properties Under Different Atmospheric Conditions. J. Sustain. Dev. Energy Water Environ. Syst. 2019; 7, 355-367.
  • 39. Petrie E. M. Epoxy Adhesive Formulations, McGraw - Hill Professional, USA, 2006.
  • 40. Szabelski J. Research on the influence of heat treatment of butt adhesive joints on their static strength. PhD Thesis, Faculty of Mechanical Engineering, Lublin University of Technology, Poland, 2014.
  • 41. Rośkowicz M. The adhesive joint - the chosen problems of static service life. Problemy Eksplotacji, 2006; 3 , 91–105.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7db62be6-1824-49db-b734-595e83571a33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.