PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of biomaterials with reference to biocompatibility dedicated for patient-specific finger implants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research was focused on determining basic mechanical properties, surface, and phase structure taking into consideration basic cytotoxicity analysis towards human cells. Methods: Biological tests were performed on human C-12302 fibroblasts cells using 3D-printed Ti6Al4V alloy (Ti64), produced by laser-based powder bed fusion (LB-PBF) and Alumina Toughened Zirconia 20 (ATZ20), produced by lithography-based ceramic manufacturing (LCM). Surface modifications included electropolishing and hydroxyapatite or hydroxyapatite/zinc coating. Structure analysis was carried out using a variety of techniques such as X-Ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM), followed by mechanical properties evaluation using nanoindentation testing. Results: Samples subjected to surface modifications showed diversity among surface and phase structure and mechanical properties. However, the cytotoxicity towards tested cells was not significantly higher than the control. Though, a trend was noted among the materials analysed, indicating that HAp/Zn coating on Ti64 and ATZ20 resulted in the best biological performance increasing cell survivability by more than 10%. Conclusions: Hydroxyapatite coating on Ti64 and ATZ20 resulted in the best biological properties. Tested materials are suitable for in vivo toxicity testing.
Rocznik
Strony
3--17
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Kraków, Poland.
  • AGH University of Krakow, Kraków, Poland.
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Kraków, Poland.
  • 3 Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
autor
  • Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Częstochowa, Poland.
  • 5 JOANNEUM RESEARCH Forschungsgesellschaft mbH, MATERIALS – Institute for Sensors, Photonics and Manufacturing Technologies, Niklasdorf, Austria.
  • Research Unit for Digital Surgery, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Austria.
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Kraków, Poland.
Bibliografia
  • [1] ALIPAL J., LEE T.C., KOSHY P., ABDULLAH H.Z., IDRIS M.I., Evolution of anodised titanium for implant applications, Heliyon, 2021, 7, DOI: 10.1016/J.HELIYON.2021.E07408.
  • [2] AMAT N.F., MUCHTAR A., AMRIL M.S., GHAZALI M.J., YAHAYA N., Effect of sintering temperature on the aging resistance and mechanical properties of monolithic zirconia, J. Mater. Res. Technol., 2019, 8, 1092–1101, DOI: 10.1016/ J.JMRT.2018.07.017.
  • [3] ARCOS D., VALLET-REGÍ M., Substituted hydroxyapatite coatings of bone implants, J. Mater. Chem. B., 2020, 8, 1781–1800, DOI: 10.1039/C9TB02710F.
  • [4] BARRIOBERO-VILA P., GUSSONE J., HAUBRICH J., SANDLÖBES S., DA SILVA J.C., CLOETENS P., SCHELL N., REQUENA G., Inducing Stable α + β Microstructures during Selective Laser Melting of Ti-6Al-4V Using Intensified Intrinsic Heat Treatments, Mater., 2017, 10: 268, DOI: 10.3390/MA10030268.
  • [5] BARRIOBERO-VILA P., GUSSONE J., STARK A., SCHELL N., HAUBRICH J., REQUENA G., Peritectic titanium alloys for 3D printing, Nat. Commun., 2018, 9, 1–9, DOI: 10.1038/s41467- 018-05819-9.
  • [6] BERGAMO E.T.P., CARDOSO K.B., LINO L.F.O., CAMPOS T.M.B., MONTEIRO K.N., CESAR P.F., GENOVA L.A., THIM G.P., COELHO P.G., BONFANTE E.A., Alumina-toughened zirconia for dental applications: Physicochemical, mechanical, optical and residual stress characterization after artificial aging, J. Biomed. Mater. Res. B. Appl. Biomater., 2021, 109, 1135–1144, DOI: 10.1002/JBM.B.34776.
  • [7] BISWAS S., DASGUPTA P., PRAMANIK P., CHANDA A., Macro and Micro-indentation Behavior of the Cortical Part of Human Femur, Procedia Mater. Sci., 2014, 5: 2320–2329, DOI: 10.1016/J.MSPRO.2014.07.475.
  • [8] BORGESE L., GELFI M., BONTEMPI E., GOUDEAU P., GEANDIER G., THIAUDIÈRE D., DEPERO L.E., Young modulus and Poisson ratio measurements of TiO2 thin films deposited with Atomic Layer Deposition, Surf. Coatings Technol., 2012, 206, 2459–2463, DOI: 10.1016/J.SURFCOAT.2011.10.050.
  • [9] CHEN K., ZHOU G., LI Q., TANG H., WANG S., LI P., GU X., FAN Y., In vitro degradation, biocompatibility and antibacterial properties of pure zinc: assessing the potential of Zn as a guided bone regeneration membrane, J. Mater. Chem. B., 2021, 9, 5114–5127, DOI: 10.1039/D1TB00596K.
  • [10] DALL’ARA E., GRABOWSKI P., ZIOUPOS P., VICECONTI M., Estimation of local anisotropy of plexiform bone: Comparison between depth sensing micro-indentation and Reference Point Indentation, J. Biomech., 2015, 48, 4073–4080, DOI: 10.1016/J.JBIOMECH.2015.10.001.
  • [11] DILEEP KUMAR V.G., SRIDHAR M.S., ARAMWIT P., KRUT’KO V.K., MUSSKAYA O.N., GLAZOV I.E., REDDY N., A review on the synthesis and properties of hydroxyapatite for biomedical applications, J. Biomater. Sci. Polym. Ed., 2022, 33, 229–261, DOI: 10.1080/09205063.2021.1980985.
  • [12] ELBEHIRY A., AL¬DUBAIB M., MARZOUK E., MOUSSA I., Antibacterial effects and resistance induction of silver and gold nanoparticles against Staphylococcus aureus-induced mastitis and the potential toxicity in rats, Microbiologyopen, 2019, 8, e00698, DOI: 10.1002/mbo3.698.
  • [13] ERIC W., CLAUS E., SHAFAQAT S., FRANK W., High Cycle Fatigue (HCF) Performance of Ti-6Al-4V Alloy Processed by Selective Laser Melting, Adv. Mater. Res., 2013, 816–817, 134–139, DOI: 10.4028/WWW.SCIENTIFIC.NET/AMR.816-817.134.
  • [14] FARABI E., TARI V., HODGSON P.D., ROHRER G.S., BELADI H., On the grain boundary network characteristics in a martensitic Ti–6Al–4V alloy, J. Mater. Sci., 2020, 55, 15299–15321, DOI: 10.1007/S10853-020-05075-7/FIGURES/12.
  • [15] FOTOVVATI B., NAMDARI N., DEHGHANGHADIKOLAEI A., DAI N., ZHANG J., CHEN Y., GONG H., DILIP J.S., YANG L., TENG C., STUCKER B., Influence of small particles inclusion on selective laser melting of Ti-6Al-4V powder, IOP Conf. Ser. Mater. Sci. Eng., 2017, 272, 012024, DOI: 10.1088/1757-899X/272/1/012024.
  • [16] FOUSOVÁ M., VOJTĚCH D., KUBÁSEK J., JABLONSKÁ E., FOJT J., Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process, Mech. Behav. Biomed. Mater., 2017, 69, 368–376, DOI: 10.1016/J.JMBBM.2017.01.043.
  • [17] GINESTRA P., FERRARO R.M., ZOHAR-HAUBER K., ABENI A., GILIANI S., CERETTI E., Selective Laser Melting and Electron Beam Melting of Ti6Al4V for Orthopedic Applications: A Comparative Study on the Applied Building Direction, Mater., 2020, 13, 5584, DOI: 10.3390/MA13235584.
  • [18] GOEL S., BJÖRKLUND S., CURRY N., GOVINDARAJAN S., WIKLUND U., GAUDIUSO C., JOSHI S., Axial Plasma Spraying of Mixed Suspensions: A Case Study on Processing, Characteristics, and Tribological Behavior of Al2O3-YSZ Coatings, Appl. Sci., 2020, 10, 5140, DOI: 10.3390/APP10155140.
  • [19] GREITEMEIER D., DALLE DONNE C., SYASSEN F., EUFINGER J., MELZ T., Effect of surface roughness on fatigue performance of additive manufactured Ti–6Al–4V, Mater. Sci. Technol., (United Kingdom), 2016, 32, 629–634, DOI: 10.1179/1743284715Y.0000000053.
  • [20] HAN X., GELEIN R., CORSON N., WADE-MERCER P., JIANG J., BISWAS P., FINKELSTEIN J.N., ELDER A., OBERDÖRSTER G., Validation of an LDH assay for assessing nanoparticle toxicity, Toxicology, 2011, 287, 99–104, DOI: 10.1016/ J.TOX.2011.06.011.
  • [21] KAHLIN M., ANSELL H., MOVERARE J.J., Fatigue behaviour of notched additive manufactured Ti6Al4V with as-built surfaces, Int. J. Fatigue, 2017, 101, 51–60, DOI: 10.1016/ J.IJFATIGUE.2017.04.009.
  • [22] KANG JIE J., XU SHI B., WANG DOU H., WANG BIAO C., ZHU NA L., Delamination failure monitoring of plasma sprayed composite ceramic coatings in rolling contact by acoustic emission, Eng. Fail Anal., 2018, 86, 131–141, DOI: 10.1016/ J.ENGFAILANAL.2018.01.005.
  • [23] KASPERKIEWICZ K., MAJOR R., SYPIEN A., KOT M., DYNER M., MAJOR Ł., BYRSKI A., KOPERNIK M., LACKNER J.M., Antibacterial Optimization of Highly Deformed Titanium Alloys for Spinal Implants, Molecules, 2021, 26, DOI: 10.3390/ MOLECULES26113145.
  • [24] KHATOON Z., MCTIERNAN C.D., SUURONEN E.J., MAH T.F., ALARCON E.I., Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention, Heliyon, 2018, 4, 1067, DOI: 10.1016/j.heliyon.2018.e01067.
  • [25] KOMASA S., KUSUMOTO T., HAYASHI R., TAKAO S., LI M., YAN S., ZENG Y., YANG Y., HU H., KOBAYASHI Y., AGARIGUCHI A., NISHIDA H., HASHIMOTO Y., OKAZAKI J., Effect of Argon-Based Atmospheric Pressure Plasma Treatment on Hard Tissue Formation on Titanium Surface, Int. J. Mol. Sci., 2021, 22, 7617, DOI: 10.3390/IJMS22147617.
  • [26] LI W., LIU W., LI M., NIE J., CHEN Y., XING Z., Nanoscale Plasticity Behavior of Additive-Manufactured ZirconiaToughened Alumina Ceramics during Nanoindentation, Mater, (Basel, Switzerland), 2020, 13, DOI: 10.3390/MA13041006.
  • [27] LIU H.J., ZHOU L., LIU P., LIU Q.W., Microstructural evolution and hydride precipitation mechanism in hydrogenated Ti–6Al–4V alloy, Int. J. Hydrogen Energy, 2009, 34, 9596–9602, DOI: 10.1016/J.IJHYDENE.2009.09.098.
  • [28] LUO Q., CAO H., WANG L., MA X., LIU X., ZnO@ZnS nanorod-array coated titanium: Good to fibroblasts but bad to bacteria, J. Colloid Interface Sci., 2020, 579, 50–60, DOI: 10.1016/J.JCIS.2020.06.055.
  • [29] MAJI A., CHOUBEY G., Microstructure and Mechanical Properties of Alumina Toughened Zirconia (ATZ), Mater Today Proc., 2018, 5, 7457–7465, DOI: 10.1016/J.MATPR.2017.11.417.
  • [30] MICHELETTI C., LEE B.E.J., DEERING J., BINKLEY D.M., COULSON S., HUSSANAIN A., ZUROB H., GRANDFIELD K., Ti-5Al-5Mo-5V-3Cr bone implants with dual-scale topography: a promising alternative to Ti-6Al-4V, Nanotechnology, 2020, 31, DOI: 10.1088/1361-6528/AB79AC.
  • [31] MINKIEWICZ-ZOCHNIAK A., JARZYNKA S., IWAŃSKA A., STROM K., IWAŃCZYK B., BARTEL M., MAZUR M., PIETRUCZUK-PADZIK A., KONIECZNA M., AUGUSTYNOWICZ-KOPEĆ E., OLĘDZKA G., Biofilm formation on dental implant biomaterials by staphylococcus aureus strains isolated from patients with cystic fibrosis, Materials, (Basel), 2021, 14, DOI: 10.3390/ma14082030.
  • [32] ROSETI L., PARISI V., PETRETTA M., CAVALLO C., DESANDO G., BARTOLOTTI I., GRIGOLO B., Scaffolds for Bone Tissue Engineering: State of the art and new perspectives, Mater. Sci. Eng. C. Mater. Biol. Appl., 2017, 78, 1246–1262, DOI: 10.1016/ J.MSEC.2017.05.017.
  • [33] RYNIEWICZ A.M., BOJKO Ł., RYNIEWICZ W.I., Microstructural and micromechanical tests of titanium biomaterials intended for prosthetic reconstructions, Acta Bioeng. Biomech., 2016, 18, 111–117, DOI:10.5277/ABB-00193-2014-02.
  • [34] SARKER A., TRAN N., RIFAI A., BRANDT M., TRAN P.A., LEARY M., FOX K., WILLIAMS R., Rational design of additively manufactured Ti6Al4V implants to control Staphylococcus aureus biofilm formation, Materialia, 2019, 5, 100250, DOI: 10.1016/J.MTLA.2019.100250.
  • [35] SHIMABUKURO M., TSUTSUMI Y., NOZAKI K., CHEN P., YAMADA R., ASHIDA M., DOI H., NAGAI A., HANAWA T., Chemical and Biological Roles of Zinc in a Porous Titanium Dioxide Layer Formed by Micro-Arc Oxidation, Coatings, 2019, 9, 705, DOI: 10.3390/COATINGS9110705.
  • [36] SHU T., ZHANG Y., SUN G., PAN Y., HE G., CHENG Y., LI A., PEI D., Enhanced Osseointegration by the Hierarchical Micro-Nano Topography on Selective Laser Melting Ti-6Al-4V Dental Implants, Front. Bioeng. Biotechnol., 2021, 8, DOI: 10.3389/FBIOE.2020.621601.
  • [37] SOUZA J.G.S., BERTOLINI M.M., COSTA R.C., NAGAY B.E., DONGARI-BAGTZOGLOU A., BARÃO V.A.R., Targeting implant-associated infections: titanium surface loaded with antimicrobial, iScience, 2021, 24, 102008, DOI: 10.1016/ J.ISCI.2020.102008.
  • [38] STĘPNIEWSKI A.A., Analysis of fatigue loads of the knee joint during gait, Acta Bioeng. Biomech. Orig. Pap., 2019, 21, DOI: 10.5277/ABB-01387-2019-03.
  • [39] SU X., WANG T., GUO S., Applications of 3D printed bone tissue engineering scaffolds in the stem cell field, Regen Ther., 2021, 16, 63–72, DOI: 10.1016/J.RETH.2021.01.007.
  • [40] TOMALA A.M., SŁOTA D., FLORKIEWICZ W., PIĘTAK K., DYLAG M., SOBCZAK-KUPIEC A., Tribological Properties and Physiochemical Analysis of Polymer-Ceramic Composite Coatings for Bone Regeneration, Lubr., 2022, 10, 58, DOI: 10.3390/ LUBRICANTS10040058.
  • [41] VALTANEN R.S., YANG Y.P., GURTNER G.C., MALONEY W.J., LOWENBERG D.W., Synthetic and Bone tissue engineering graft substitutes: What is the future?, Injury, 2021, 52, S72–S77, DOI: 10.1016/J.INJURY.2020.07.040.
  • [42] VARGHESE G., MORAL M., CASTRO-GARCÍA M., LÓPEZ- -LÓPEZ J.J., MARÍN-RUEDA J.R., YAGÜE-ALCARAZ V., HERNÁNDEZ-AFONSO L., RUIZ-MORALES J.C., CANALES- -VÁZQUEZ J., Fabrication and characterisation of ceramics via low-cost DLP 3D printing, Boletín la Soc Española Cerámica y Vidr, 2018, 57, 9–18, DOI: 10.1016/J.BSECV.2017.09.004.
  • [43] WANG M., WU Y., LU S., CHEN T., ZHAO Y., CHEN H., TANG Z., Fabrication and characterization of selective laser melting printed Ti–6Al–4V alloys subjected to heat treatment for customized implants design, Prog. Nat. Sci. Mater. Int., 2016, 26, 671–677, DOI: 10.1016/j.pnsc.2016.12.006.
  • [44] WANG Z., WANG X., WANG Y., ZHU Y., LIU X., ZHOU Q., NanoZnO-modified titanium implants for enhanced antibacterial activity, osteogenesis and corrosion resistance, J. Nanobiotechnology, 2021, 19, DOI: 10.1186/S12951- 021-01099-6.
  • [45] WOJCIESZAK D., MAZUR M., INDYKA J., JURKOWSKA A., KALISZ M., DOMANOWSKI P., KACZMAREK D., DOMARADZKI J., Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process, Mater. Sci. Pol., 2015, 33, 660–668, DOI: 10.1515/MSP-2015-0084.
  • [46] XIE S., GUO L., ZHANG M., QIN J., HU R., Durable hydrophobic ceramics of Al2O3–ZrO2 modified by hydrophilic silane with high oil/water separation efficiency, J. Porous Mater., 2021, 284 (28), 1115–1127, DOI: 10.1007/S10934-021-01055-7.
  • [47] YABUTSUKA T., KIDOKORO Y., TAKAI S., Improvement of hydroxyapatite formation ability of titanium-based alloys by combination of acid etching and apatite nuclei precipitation, IET Nanobiotechnology, 2020, 14, 688–694, DOI: 10.1049/ IET-NBT.2020.0053.
  • [48] YANG L., LASSELL A., PAIVA G., Further study of the electropolishing of Ti 6 Al 4 V parts made via electron beam melting, Mater. Sci., 2015, 1730–1737.
  • [49] ZANDINEJAD A., REVILLA-LEÓN M., METHANI M.M., KHANLAR L.N., MORTON D., The Fracture Resistance of Additively Manufactured Monolithic Zirconia vs. Bi-Layered Alumina Toughened Zirconia Crowns When Cemented to Zirconia Abutments. Evaluating the Potential of 3D Printing of Ceramic Crowns: An In Vitro Study, Dent. J., 2021, 9, DOI: 10.3390/ DJ9100115.
  • [50] ZHANG Y., LI J., CHE S., Electrochemical Science Electropolishing Mechanism of Ti-6Al-4V Alloy Fabricated by Selective Laser Melting, Int. J. Electrochem. Sci., 2018, 13, 4792–4807, DOI: 10.20964/2018.05.79.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7db2d754-e5fe-464e-bd81-af419cf71837
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.