PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Limiting behavior of weighted sums of heavy-tailed random vectors and applications

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present an integral test to determine the limiting behavior of weighted sums of i.i.d. Rd-valued random vectors belonging to the (generalized) domain of operator semistable attraction of some nonnormal law, and deduce a version of Chover’s law of the iterated logarithm for them. As applications, the corresponding limit results for some classical summability methods are also established.
Rocznik
Strony
281--295
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
  • Department of Mathematics, Jinan University, Guangzhou, 510630, P.R. China
  • Department of Mathematics, University of Nevada, Reno, NV 89557
Bibliografia
  • [1] P. Y. Chen, Limiting behavior of weighted sums with stable distributions, Statist. Probab. Lett. 60 (2002), pp. 367-375.
  • [2] P. Y. Chen and Q. P. Chen, LIL for φ-mixing sequence of random variables (in Chinese), Acta Math. Sinica 46 (3) (2003), pp. 571-580.
  • [3] P. Y. Chen and L. H. Huang, On the law of the iterated logarithm for geometric series of stable distribution (in Chinese), Acta Math. Sinica 43 (2000), pp. 1063-1070.
  • [4] P. Y. Chen and X. D. Liu, Law of the iterated logarithm for the weighted partial sums (in Chinese), Acta Math. Sinica 46 (5) (2003), pp. 999-1006.
  • [5] P. Y. Chen and H. P. Scheffler, Limiting behavior of weighted sums of heavy-tailed random vectors, Publ. Math. Debrecen (2004), to appear.
  • [6] P. Y. Chen and J. H. Yu, On Chover's LIL for the weighted sums of stable random variables, Acta Math. Sci. 23B (1) (2003), pp. 74-82.
  • [7] V. Chorny, Operator semistable distributions on Rd, Theory Probab. Appl. 57 (1986), pp. 703-705.
  • [8] J. Chover, A law of the iterated logarithm for stable summands, Proc. Amer. Math. Soc. 17 (1966), pp. 441-443.
  • [9] M Ledoux and M. Talagrand, Probability in Banach Spaces, Springer, Berlin 1991.
  • [10] D. Li, M. B. Rao, T. F. Jiang and X. C. Wang, Complete convergence and almost sure convergence of weighted sums of random variables, J. Theoret. Probab. 8 (1995), pp. 49-76.
  • [11] M. M. Meerschaert and H. P. Scheffler, Limit Distributions for Sums of Independent Random Vectors, Wiley, New York 2001.
  • [12] V. V. Peterov, Sums of Independent Random Variables, Springer, New York 1975.
  • [13] H. P. Scheffler, A law of the iterated logarithm for heavy-tailed random vectors, Probab. Theory Related Fields 116 (2000), pp. 257-271.
  • [14] H. P. Scheffler, Multivariate R-0 varying measures, Part I: Uniform bounds, Proc. London Math. Soc. 81 (2000), pp. 231-256.
  • [15] H. P. Scheffler, Norming operators for generalized domains of semistable attraction, Publ. Math. Debrecen 58 (2001), pp. 391-409.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7dab5836-327c-4ade-a9a7-89fff453ab1e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.