
COMPUTER SCIENCE AND MATHEMATICAL MODELLING 8 29−39 (2018)

 29

Method of agents’ state estimation in multiresolution multiagent simulation

D. PIERZCHAŁA, P. CZUBA

dariusz.pierzchala@wat.edu.pl, czuba.przemyslaw@wat.edu.pl

Military University of Technology, Faculty of Cybernetics
Institute of Computer and Information Systems

Urbanowicza Str. 2, 00-908 Warsaw, Poland

The paper proposes the multiagent techniques for approximation of agent’s state in the multiresolution
multiagent simulation. The key methods we have used for state aggregation and disaggregation are: consensus
algorithm and formation control. The idea of the coordination of multiple agents has emerged from both
observation and simulation of a collective behavior of biological entities. The consensus algorithms are
commonly used for the cooperative control problems in the multiagent systems, whilst the formation control is
the most popular and fundamental motion coordination problem in the multiagent systems, where agents
converge to predefined geometric shapes.
The presented approach shows that multiagent methods seem to be very promising in multiresolution
simulation. Consensus and formation control algorithms remove necessity to specify the much more complex
algorithms for the aggregation and disaggregation needs.

Keywords: multiresolution multiagent simulation, multiagent systems, multiagent networks, formation
control.

DOI: 10.5604/01.3001.0013.1460

1. Introduction

Multiagent Systems (MAS) is an
interdisciplinary area of science which has been
developing very dynamically in recent years.
MAS is closely linked to the real world which
inherently consists of a large number of
constantly evolving and interacting components.
Due to growing complexity of real world
models, the use of classical methods in their
analysis is often not satisfactory. This fact leads
to convergence of that new field in computer
science – multiagent system. It emerged from
another field called Distributed Artificial
Intelligence (DAI) and combines ideas from
many disciplines, including: artificial
intelligence (AI), sociology, economics and even
philosophy [5].

 The simplest definition of MAS might be
as follows: “system composed of multiple
interacting computing elements, known as
agents'.

Agents are situated (Figure 1) in a specific
environment and are capable of autonomous
actions [6] (have decision making capabilities to
create and adjust their actions in order to satisfy
their intention objectives). Such entities are also
capable of interacting with other agents what

means that they can coordinate their actions
with each other, communicate with one another
and reach an agreement. That leads to the
fundamental problem of multiagent systems
which is a major part of the paper: agents
coordination.

Every model is an abstraction of some part
of reality. Nevertheless, its level of detail
depends primarily on two factors [12]: scope
(the extent of a system, input domain, and output
range treated) and resolution (the level of detail
at which the system components and their
behaviors are depicted). Models also differ in
terms of their representation (perspective).

Fig. 1. An agent in its environment. Entity takes
observations from the environment and according to

them produces actions which affect it [7]

Przemysław Czuba, Dariusz Pierzchała, Method of agents' state estimation in multiresolution...

 30

Multiresolution Modelling (MRM) [12] is
a discipline which deals with solving
the conceptual and representation differences
that occur because of many resolution levels in
the simulation of a simulation entity.
A resolution might have many dimensions.
A higher resolution can be perceived as more
detailed representation of a modelled entity
(a level of individual soldiers instead of a whole
platoon). In MRM we typically say that a high
resolution level corresponds to a low level of
aggregation (high-resolution entity, HRE) and
analogously – a low resolution level to a high
level of aggregation (low-resolution entity,
LRE), for instance in terms of entity’s attributes.

When the two entities on different levels of
resolution interact with each other, the problem
with consistency might occur. There are many
approaches for resolving the problem of
transition between resolution levels [13]. In this
paper we focus on the cross-resolution method
(CRM) – aggregation and disaggregation.

Although the entities represent the same
entity at an abstract level, they cannot interact
correctly with each other while maintaining
different levels of resolution. The typical
solution for that problem is a dynamic change of
entity resolution to hold the two entities on the
same level of detail. An aggregation is a process
which transits HRE to LRE (a state aggregation)
and analogously a disaggregation amends LRE
to HRE (a state disaggregation).

The other issues are complex adaptive
systems (CAS) that are quite important
motivation for MRM aggregated models. CAS
exhibit coherent behaviors on macroscopic level
which are not understandable in terms of
microscopic rules that govern the system
(emergent behaviors) [14]. It is said that
intelligence is emergent behavior of biochemical
systems. Although Schrödinger’s paradox is now
understood, we still do not know for instance
how to explain consciousness in terms of
proteins and DNA.

Multiresolution multiagent simulation
brings together the above concepts. It simulates
multiresolution models with use of multiagent
methods.

The paper proposes to use multiagent
techniques for estimation of agent’s state in the
multiresolution multiagent simulation. The key
methods we have used for state aggregation and
disaggregation are: consensus algorithm [15] and
formation control [8]. They will be described in
detail in later sections of this paper.

The paper is organized as follows. Section 2
gives a concise description of multiagent

networks which are crucial in terms of the later
parts. Section 3 contains a proposition for
agent’s state aggregation. In Section 4 authors
describe the chosen disaggregation method.
Section 5 contains description of a simulation
package which has been used for the original
implementation. Section 6 describes a case study
with some experiments. And finally,
the concluding remarks are given in Section 7.

2. Multiagent Networks

The Multiagent Networks [16] might be defined
as a set of dynamic entities which cooperate via
communication network to exchange messages.
This fact allows them to coordinate their actions
in order to fulfill collective goal having at the
same time limited computing resources and
communication as well as perception
capabilities.

The common denominator of multiagent
networks are the following properties:
• autonomic entities, potentially with decision

making and communication capabilities
between neighbors;

• existence of information exchange network.
The multiagent networks are being modelled

with the use of Graph Theory methods and
definitions (Figure 2).

Fig. 2. Example of multiagent network modelled

as a directed graph. Nodes j and l are predecessors
of node i [16]

The following symbols are common multiagent
network determinations:
• 𝑥𝑖(𝑡), 𝑖𝜖𝑁 – state of node (agent) i at the

time t;
• 𝑁𝑖 – for undirected graph: set of neighbors

of node i, for directed – set of predecessors;
• 𝐼𝑖(𝑡) = �𝑥𝑗(𝑡) � 𝑗𝜖 𝑁𝑖} – information

available to agent i at the time t;
• 𝑥𝑖(𝑡 + 1) = 𝐹𝑖(𝑥𝑖(𝑡), 𝐼𝑖(𝑡)) – rule to

determine next state of agent i.
The next sections contain description of
the two most common use cases of multiagent
networks: consensus and formation problems.

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 8 29−39 (2018)

 31

3. Aggregation method as the
consensus algorithm

The consensus algorithms are commonly used
for the cooperative control problems in
the multiagent systems.

We can describe the consensus algorithm
(protocol) as a set of interaction rules describing
way of exchange of information between
an agent and its neighbors. During “consensus
process” the agent’s states are evolving over
time. It is said that a system reached
the consensus when values of states (that agents
need to agree upon) are the same for every agent
in a system.

The proposed method for aggregation of
agent’s states is based on the following
consensus protocol for a static in time topology
and discrete time [17]:

𝑥𝑖(𝑡 + 1) = 1

 𝑁𝚤���+1
�𝑥𝑖(𝑡) + ∑ 𝑥𝑗(𝑡)𝑗𝜖𝑁𝑖 � (1)

Agent’s state in the next time step is an
arithmetic mean both of his and his neighbor’s
states. If a topology was dynamic, a set of
neighbors would be dependent on time [16].

The following limit [17] describes an
expected result of the algorithm. It should be
equal to the arithmetic mean of all N agents’
states:

lim𝑡→∞ 𝑥𝑖(𝑡) = 1
𝑁�
∑ 𝑥𝑗(0), 𝑖𝜖𝑁𝑗𝜖𝑁 (2)

Figure 3 shows the example evolution of

agreeing by agents on the value that represents
a state of lower resolution entity.

Fig. 3. Evolution of agent's states in time.
In the end they share the same value [17]

4. Disaggregation method
as the formation control

The idea of the coordination of multiple agents
has emerged from both observation and
simulation of a collective behavior of biological
entities (like ants or birds). They achieve
a complex group behavior through some
network communication channels and an ordered
motion coordination [8].

The formation control is the most popular
and fundamental motion coordination problem in
the multiagent systems, where agents converge
to predefined geometric shapes. Agents need to
obey local rules that are based on a partial
knowledge about the position of its neighbors.
The example of a multiagent task could be
exploration, where a team of agents move
according to specific formation in order to
maximize their discovery skills.

The formation control strategies could be
divided in to several categories. The first one is
based on the swarm intelligence methods, where
agents take actions accordingly to simple and
reactive behavior rules. They keep a distance
from the neighbors without maintaining
a specific position in a formation and its shape.
The example of such strategy is Reynold’s Boid
model [9]. The second approach is based on
specified communication network topology
called Formation Graph (FG) [8]. The nodes
represent agents positions whilst the edges
possible communication channels between
matched pairs of agents. A specified edge weight
refers to a relative vector of the desired position
between agents. Figure 4 shows example of FG.

Fig. 4. Formation Graph example [8]

Most approaches to the formation control
are analyzed from continuous-time point of
view, for instance the complete FG, where exist
a bidirectional communication between every
pair of agents [10]. The discrete time formation
control has been generally studied with the use
of consensus algorithms which includes

Przemysław Czuba, Dariusz Pierzchała, Method of agents' state estimation in multiresolution...

 32

a relative position vectors [11]. This paper
considers the agents converge to the static in
time formation patterns and a discrete-time flow.

The formation control strategy used for
a disaggregation is described precisely in [8].
It is based on Formation Graph. The starting
position for every agent is equal to a state
of LRE.

The desired relative position for every agent
in a formation is described by the following
formula:

𝑧𝑖∗(𝑡) = 1
𝑁𝚤���
∑ (𝑧𝑗 + 𝑐𝑗𝑖)𝑗∈𝑁𝑖 , 𝑖𝜖𝑁 (3)

It is based on the desired relative position
vectors (𝑐𝑗𝑖) between an agent i and his
predecessors. The formation control strategy
used for the disaggregation method is a formula:

𝑢𝑖(𝑡) = 𝑘(𝑧𝑖(𝑡) − 𝑧𝑖∗(𝑡)), 𝑖 = 1, … , 𝑛 (4)

where k is an adjustment parameter.
The Figure 5 shows the simulation results for FG
from Figure 4.

Fig. 5. Agent’s trajectories during calculation of

desired formation positions [8]

5. Discrete simulation software

package

Global trends in operation research indicate that
computer simulation is one of the most common
approaches to modelling cyberspace
at the device, protocol, service and user levels.
It increases the possibilities for quantitative and
qualitative analysis and forecasting. It is
a recognised alternative to experimenting with
a real system or its physical prototype and to
mathematical analysis. It replaces informal
methods of reasoning based on experience and

intuition. As a result of the development of
computer systems, simulation has undergone
the evolution of technologies and algorithms
similar to typical IT systems: from a sequential
simulation experiment performed on a stand-
alone machine, through parallel, networked to
distributed in virtual resources (so-called cloud
computing). However, dedicated computer
simulators, adequate but at the same time
universal and open to modification, are essential
for successful simulation. In our work, we
emphasize these two features:
• openness to defining new algorithms for

behaviours (activities) of objects;
• universality, i.e. the ability to adapt to

various types of problems and levels of
modelling.

We will define computer simulation as
a quantitative and qualitative method of
modelling in a formal language and then
implementing in a computer program
the features of systems (structural and
behavioural) in order to experiment with
the model and then study occurring processes
during the simulation time [10]. The beginning
of dynamic (in time meaning) computer
simulation was the development of network
models (Carl Adam Petri) and methods of
system dynamics analysis (Jay W. Forrester) and
then the languages and methods of continuous
and discreet simulation: differential: (Lockheed
– Digital Differential Analyzer Simulator
DIDAS9), events (Harry Markowitz, Bernard
Hausner – SIMSCRIPT), process interactions
(Ole-Johan Dahl and Kristen Nygaard –
Simula67, Knuth and McNeley – Algol SOL),
selective activity (John Buxton and John Laski –
Fortran CSL) and 3-phases (Keith Douglas
Tocker – General Simulation Program GSP).
The milestone was the language of Simula67
which, through its concept of class and object,
moved away from the structural approach
commonly used at the time and becoming
the protoplast of objectivity. The response to
the growing simulation demand are packages
extending general purpose languages (e.g. C#,
Java) with simulation services (dynamic
calculation of state variables values, time
control, generation of random numbers,
dispersion of processes in the network). Thanks
to these techniques, any evolution in language
also implies new possibilities in simulation
applications. Simulation experiments are carried
out not only on individual computer stations, not
only in local networks and grids, but also
in services provided from cloud computing.
In the case of the Java language, the following

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 8 29−39 (2018)

 33

possibilities were used in the presented research:
advanced collections of objects, functional
interfaces and Lambda expressions, integration
through open scripts with Groovy and Python
languages.

The most popular and universal type of
simulation is still being constructive simulation
which is based on formal models of objects and
their implementation in computer programs.
The original Java-based discrete simulation
software package (named DisSim) has been
developed in order to facilitate creating
constructive simulation software – both discrete
and quasi-continuous as well as hybrid. DisSim
is an object paradigm based package. The basic
entity is an object ‘o’ with its attributes:
• O = {o = <id, c>}, c ∈ CO, id ∈ N – a set of

simulated objects of ‘c’ class that are
identified by an ‘id’ with a unique value;

• CO – a non-empty set of classes of modelled
objects;

• Ac – a non-empty set of attributes specified
for the c ∈ CO object class;

• Va
c – a set of acceptable values of the a ∈ Ac

attribute of the c ∈ CO objects class.
The CO and Ac sets contain the numbers of
modelled object classes and their attributes.
At any time ‘t’ of the simulation time each
measurable feature of the system is represented
by an ordered quadruple: so,a= <o, a, v, t>.
The state of the modelled system will be
the vector created by all attributes of all objects
at the simulation time t: S(t)={<o, a , v, t>},
o∈O. In the simulation ν ∈ Va

c values of a ∈ Ac
attributes are determined as a result of the user-
defined state change function. The concept of
simulation time t ∈ T is essential for a system
model – it is a non-negative and non-decreasing
real variable of value from T⸦R+∪{0}. For the
defined simulation moments ti, tj, tk, for T as
a collection of the moments when a system state
changes there are applicable the following
conditions:
• for a quasi-continuous passage of time: T is

a subset of points in a certain range of non-
-negative real numbers such that
∀ti,tk ∃tj (ti<tj<tk), so |tk−ti|≤ε , ∀ε>0 – for any
two moments there is a moment between
them;

• for a discrete passage of time: T is a countable
subset such that ∃ti,tk ¬∃tj (ti<tj<tk) – there are
two such moments that there is no time
between them.

Consequently, along with the assumptions for
each object there are defined: the state vector
with attributes and either the events or

periodically executed equations that change
the values of attributes (and finally a state of
the system). The term event ‘e’ from a finite set
of events ‘E’ is understood as the algorithmic
change in object’s state which is scheduled for
a specific simulation moment t:
ei=<t, fe

S(t)>, t ∈ T, i=1...2ExT, where
fe

S: SxT→SxT. According to this idea S(t) is
invariable over a period of time [ti, ti+1).
On the other side we have the Runge-Kutta
numerical algorithm for the differential
equations calculated upon the rule “Future state
= Present state + change after time step”.
A sequence of chronologically (in a sense of
simulation time) ordered change in state is
the process of simulation. In general, it may be
perceived as a multi-dimensional stochastic
process where the individual elements of a state
vector describe the various parameters of
the system at the time t.
The current simulation time t* is calculated
either with the time stamp of the first event from
the event calendar (a formula for an event-driven
simulation) : t* = min {t: ei=< t, fe

S(t)>} or
incrementally by a constant time step (a formula
for step-by-step simulation) : * 1i it t t t+= = + ∆ .
The result of an implementation in Java of
the above model are the classes of DisSim
package. The main classes of the package
are presented in a simplified class diagram
(Figure 6).
Every o ∈ O simulation object of the c∈CO class
inherits from the abstract BasicSimEntity class.
Its Ac attributes store the values of the state
vector. Each event e = <t, fe

S> is a state change
created in objects inherited from the generic
BasicSimStateChange class. An event is
the result of a fe

S state change function
implemented as the transition() method of
the BasicSimStateChange class. The event class
attributes include: scheduled execution time and
priority of the status change (runSimTime,
priority) and an optional time step
(repetitionPeriod) for either a discrete with
a fixed step or a quasi- continuous simulation.
For the latter type of simulation a special
repeatable event class RKEvent is dedicated.
After each time step (stored in repetitionPeriod),
the values of equations describing the system
state are determined in the method transition().
The exact form of the equations has to be
determined in Function<RKFunctParams,
List<Double>> by the DisSim user.
The Function is a realization of Java functional
interface thus an user is expected to implement
lambda expressions and method references.

Przemysław Czuba, Dariusz Pierzchała, Method of agents' state estimation in multiresolution...

 34

Fig. 6. Simplified class diagram of DisSim package

Moreover, DisSim is having classes

responsible for message transmission via event
bus, dynamic configuration of objects and open
plug-in architecture. Additionally, as we indicate
in previous section, an interpreter classes for
Groovy scripts have been implemented.
The integration between DisSim classes and
Groovy scripts has been achieved on the base of
GroovyScriptEngine and specialized methods
to load/run scripts: loadScriptByName(…),
getDeclaredMethod(method).invoke(…, …).
For each object instance of
BasicSimStateChange class a new algorithm
of the method transition() might be defined in
a separated Groovy script file.

Finally, codes from scripts will be loaded
into the scripts’ map in DisSim and launched by
an interpreter during an execution of
the transition() methods inside objects inherited
from BasicSimStateChange and defined by
the DisSim user.

6. Case study

Within scope of this paper the simulator of
Unmanned Aerial Vehicle (UAV) teams has
been implemented to properly test the presented
ideas. It was developed with the use of DisSim
package described in Section 5 and JavaFX
library. UAV team adopts the specified

formation according to its mission. Due to
conservation of a computational power and
the lack of necessity to observe individual units
in every moment of the simulation, by default
UAV teams are represented in an aggregated
state (LRE). Figure 7 shows its graphical
representation.

The course of simulation is following.
At the beginning, the UAV teams are in
the aggregated state and during the task of
patrolling a specified terrain. When the team
receives a signal about object that requires
an action (searching team – a rescue, attacking
team – an elimination), the LRE flies at the place
of the event and performs the disaggregation.
Figure 8 and Figure 9 shows the disaggregated
formations for the search and attacking teams
respectively. When the team finishes its mission,
the entity aggregates its state and returns to
patrolling.

The test experiments for originally
implemented case study were made with use of
Java method System.currentTimeMillis() which
measures a duration of timeframe in
milliseconds. We measure both aggregation and
disaggregation timeframe for the different
formations.

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 8 29−39 (2018)

 35

Fig. 6. UAV Simulator on aggregated level

Fig. 7. Rescue formation with five nodes (agents)

For needs of the tests, it has been prepared
additional formation – “Tortoise” (Figure 11).
The results of the experiments are collectively
presented in Table 1.

The network topology have huge
significance in terms of disaggregation time.
Attacking and searching formations have
the same number of nodes, but different
disaggregation times.

Przemysław Czuba, Dariusz Pierzchała, Method of agents' state estimation in multiresolution...

 36

Fig. 8. Elimination formation with five nodes (agents)

Fig. 9. “Tortoise” formation without “stabilization points”

The disaggregation effectiveness is
dependent not only on a number of nodes in
a network, but on the way how agents are
connected in a network as well. The attacking
formation has central agent which acts as
“stabilization point”.

In this case, agents on the borders establish their
positions relative to the neighbors, but at
the same time they are blocking the UAVs in
the middle of a formation which results in a long
disaggregation time. Figure 10 shows “Tortoise”
formation where agents are connected only to its
closest neighbors.

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 8 29−39 (2018)

 37

Fig. 10. “Tortoise” formation with fifteen nodes (agents)

Tab. 1. Results of experiments

Attacking formation

 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
Aggregation

[ms] 503 500 511 499 502 500 499 500 511 500

Disaggregation
[ms] 6837 7101 7101 7111 7106 7102 7113 7112 7108 7106

Searching formation
 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

Aggregation
[ms] 1005 1000 699 700 701 700 699 701 699 700

Disaggregation
[ms] 4825 4800 4801 4800 4799 4801 4801 4802 4800 4799

“Tortoise” formation
 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

Aggregation
[ms] 1528 1601 1599 1202 1202 1526 1601 1536 1599 1603

Disaggregation
[ms] 32539 35524 44561 43630 35310 32616 35742 32732 35703 43869

By adding “stabilization points” between agents in the corners of formation, the acceleration of
the process is achieved.

Przemysław Czuba, Dariusz Pierzchała, Method of agents' state estimation in multiresolution...

 38

7. Conclusions

The presented approach shows that multiagent
methods seem to be promising in multiresolution
simulation. Consensus and Formation control
algorithms, that work upon multiagent networks,
remove necessity to specify the complex
algorithms for the aggregation and
disaggregation.

In the multiagent world it is hardly possible
to predict and implement resolution change
scenario for every possible situation.
The multiagent methods allow to specify
the general rules which give rise to complex
behaviors.

The conception of multiresolution
modelling and multiagent systems are inherently
connected. The possibility to present an entity on
aggregated level leads to saving computational
power what is still being the problem in large
multiagent simulations.

The Formation control is dependent on
a Formation Graph specification. That implicates
a situation of a programmer responsibility to
ensure the effectiveness of a method. Moreover,
the interesting idea would be to use machine
learning methods for a formation control
topology optimization.

Machine learning techniques could bring
the aggregation and disaggregation scenarios
specification to another state. Such algorithm
might take into consideration variables, for
instance, related to terrain and on this basis
might choose optimal resolution level change
method.

8. Bibliography

[1] Dyk M., Najgebauer A., Pierzchała D.,

“Agent-Based M&S of Smart Sensors for
Knowledge Acquisition Inside the Internet
of Things and Sensor Networks”, in:
Intelligent Information and Database
Systems, N.T. Nguyen et al. (Eds.),
ACIIDS 2015, Part II, LNAI 9012,
224−236, Springer, 2015.

[2] Dyk M., Najgebauer A., Pierzchała D.,
“SenseSim: An Agent-Based and Discrete
Event Simulator for Wireless Sensor
Networks and the Internet of Things”,
Proceedings IEEE World Forum on Internet
of Things, WF-IoT 2015, 14–16 December,
2015, Milan, Italy, pp. 345–350, NY, USA,
2015.

[3] Dyk M., Najgebauer A., Pierzchała D.,
“Augmented perception using Internet of
Things”, in: Information Systems

Architecture and Technology. Selected
Aspects of Communication and
Computational Systems, A. Grzech,
L. Borzemski, J. Świątek, Z. Wilimowska
(Eds.), pp. 109–118, Oficyna Wydawnicza
Politechniki Wrocławskiej, 2014.

[4] D. Pierzchała, “Application of Ontology
and Rough Set Theory to Information
Sharing in Multi-resolution Combat M&S”,
in: Advanced Approaches to Intelligent
Information and Database Systems, in
series: Studies in Computational
Intelligence, Vol. 551, pp. 193–203,
Springer, 2014.

[5] Weiss G. (Ed.), Multiagent Systems.
A Modern Approach to Distributed Modern
Approach to Artificial Intelligence,
The MIT Press, Massachusetts Institute of
Technology, 1999.

[6] Wooldridge M., An Introduction to
Multiagent Systems, Wiley Publishing,
2009.

[7] Wooldridge M., Jennings N.R., “Intelligent
agents: theory and practice”,
The Knowledge Engineering Review,
Vol. 10, No.2, 115–152 (1995).

[8] Hernandez-Martinez E.G.,
Flores-Godoy J.J., Fernandez-Anaya G.,
“Decentralized Discrete-Time Formation
Control for Multirobot Systems”, Discrete
Dynamics in Nature and Society, Vol. 2013
(2013).

[9] Reynolds C.W., “Flocks, Herds, and
Schools: A Distributed Behavioral Model”,
in: SIGGRAPH ’87 Conference
Proceedings, Vol. 21(4), pp. 25–34, ACM,
New York, USA, 1987.

[10] Hernandez-Martinez E.G, Aranda-
-Bricaire E., “Non-collision conditions in
multi-agent robots formation using local
potential functions”, in: Proceedings of
the IEEE International Conference on
Robotics and Automation (ICRA’08),
pp. 3776–3781, Pasadena, California,
USA, 2008.

[11] Ren W., Beard R. W., Distributed
Consensus in Multi-vehicle Cooperative
Control: Theory and Applications, in series:
Communications and Control Engineering,
Springer-Verlag, London 2008.

[12] Davis P.K., Bigelow J.H., Experiments in
Multiresolution Modeling (MRM), RAND,
1998.

[13] Davis P. K., An Introduction to Variable-
Resolution Modeling and Cross-Resolution
Model Connection, RAND and the RAND
Graduate School of Policy Studies, 1993.

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 8 29−39 (2018)

 39

[14] Holland J., Hidden Order: How Adaptation
Builds Complexity, Addison-Wesley,
Reading, Mass, 1995.

[15] Saber R. O. and Murray R. M., B
“Consensus protocols for networks of
dynamic agents”, in: 2003 American
Control Conference Proceedings,
pp. 951–956, 2003.

[16] Mesbahi M., Egerstedt M., Graph Theoretic
Methods in Multiagent Networks, Princeton
University Press, 2010.

[17] Zhipu J., Consensus Problem and
Algorithms, CDS 270-2: Lecture 8-1,
May 2006.

Metoda wyznaczania stanu agentów w symulacji wieloagentowej o zmiennej

rozdzielczości

D. PIERZCHAŁA, P. CZUBA

W artykule zaproponowano wieloagentowe podejście do wyznaczania stanu agenta w symulacji
wielorozdzielczej (o zmiennej rozdzielczości) i wieloagentowej. Dwie kluczowe metody zastosowane do
realizacji procesu agregacji i deagregacji stanów to: algorytm konsensusu i kontroli formacji. Idea koordynacji
działań wielu agentów wyłoniła się z obserwacji oraz symulacji zbiorowych zachowań żywych istot. Algorytmy
konsensusu są powszechnie stosowane w przypadku problemów sterowania kooperacyjnego w systemach
wieloagentowych (konsensus oznacza osiągnięcie zgody na temat szczególnej wartości, która jest zależna od
stanu wszystkich agentów w sieci). Natomiast kontrola formacji jest najpopularniejszym algorytmem
w problemie koordynacji ruchu w systemach wielorobotowych, gdzie musi być spełniony warunek utrzymania
predefiniowanego kształtu geometryczne formacji.
Przedstawione w artykule podejście pokazuje, że metody wielodyscyplinarne wydają się bardzo obiecujące
w symulacji wielorozdzielczej. Algorytmy konsensu i kontroli formacji eliminują konieczność definiowania
znacznie bardziej złożonych algorytmów na potrzeby agregacji i deagregacji.

Słowa kluczowe: symulacja wieloagentowa o zmiennej rozdzielczości, systemy wieloagentowe, sieci
wieloagentowe, kontrola formacji grupy.

