
COMPUTER SCIENCE AND MATHEMATICAL MODELLING 8 29−39 (2018) 

 29 

 
 
Method of agents’ state estimation in multiresolution multiagent simulation 
 

D. PIERZCHAŁA, P. CZUBA 
  

dariusz.pierzchala@wat.edu.pl, czuba.przemyslaw@wat.edu.pl 
 

Military University of Technology, Faculty of Cybernetics  
Institute of Computer and Information Systems  

Urbanowicza Str. 2, 00-908 Warsaw, Poland 
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1. Introduction 
 
Multiagent Systems (MAS) is an 
interdisciplinary area of science which has been 
developing very dynamically in recent years. 
MAS is closely linked to the real world which 
inherently consists of a large number of 
constantly evolving and interacting components. 
Due to growing complexity of real world 
models, the use of classical methods in their 
analysis is often not satisfactory. This fact leads 
to convergence of that new field in computer 
science – multiagent system. It emerged from 
another field called Distributed Artificial 
Intelligence (DAI) and combines ideas from 
many disciplines, including: artificial 
intelligence (AI), sociology, economics and even 
philosophy [5]. 

 The simplest definition of MAS might be  
as follows: “system composed of multiple 
interacting computing elements, known as 
agents'.  

Agents are situated (Figure 1) in a specific 
environment and are capable of autonomous 
actions [6] (have decision making capabilities to 
create and adjust their actions in order to satisfy 
their intention objectives). Such entities are also 
capable of interacting with other agents what 

means that they can coordinate their actions  
with each other, communicate with one another 
and reach an agreement. That leads to the 
fundamental problem of multiagent systems 
which is a major part of the paper: agents 
coordination. 

Every model is an abstraction of some part 
of reality. Nevertheless, its level of detail 
depends primarily on two factors [12]: scope 
(the extent of a system, input domain, and output 
range treated) and resolution (the level of detail 
at which the system components and their 
behaviors are depicted). Models also differ in 
terms of their representation (perspective). 

 

 
 

Fig. 1. An agent in its environment. Entity takes 
observations from the environment and according to 

them produces actions which affect it [7] 
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Multiresolution Modelling (MRM) [12] is  
a discipline which deals with solving  
the conceptual and representation differences 
that occur because of many resolution levels in 
the simulation of a simulation entity.  
A resolution might have many dimensions.  
A higher resolution can be perceived as more 
detailed representation of a modelled entity  
(a level of individual soldiers instead of a whole 
platoon). In MRM we typically say that a high 
resolution level corresponds to a low level of 
aggregation (high-resolution entity, HRE) and 
analogously – a low resolution level to a high 
level of aggregation (low-resolution entity, 
LRE), for instance in terms of entity’s attributes. 

When the two entities on different levels of 
resolution interact with each other, the problem 
with consistency might occur. There are many 
approaches for resolving the problem of  
transition between resolution levels [13]. In this 
paper we focus on the cross-resolution method 
(CRM) – aggregation and disaggregation.  

Although the entities represent the same 
entity at an abstract level, they cannot interact 
correctly with each other while maintaining 
different levels of resolution. The typical 
solution for that problem is a dynamic change of 
entity resolution to hold the two entities on the 
same level of detail. An aggregation is a process 
which transits HRE to LRE (a state aggregation) 
and analogously a disaggregation amends LRE 
to HRE (a state disaggregation). 

The other issues are complex adaptive 
systems (CAS) that are quite important 
motivation for MRM aggregated models. CAS 
exhibit coherent behaviors on macroscopic level 
which are not understandable in terms of 
microscopic rules that govern the system 
(emergent behaviors) [14]. It is said that 
intelligence is emergent behavior of biochemical 
systems. Although Schrödinger’s paradox is now 
understood, we still do not know for instance 
how to explain consciousness in terms of 
proteins and DNA. 

Multiresolution multiagent simulation 
brings together the above concepts. It simulates 
multiresolution models with use of multiagent 
methods.  

The paper proposes to use multiagent 
techniques for estimation of agent’s state in the 
multiresolution multiagent simulation. The key 
methods we have used for state aggregation and 
disaggregation are: consensus algorithm [15] and 
formation control [8]. They will be described in 
detail in later sections of this paper. 

The paper is organized as follows. Section 2 
gives a concise description of multiagent 

networks which are crucial in terms of the later 
parts. Section 3 contains a proposition for 
agent’s state aggregation. In Section 4 authors 
describe the chosen disaggregation method. 
Section 5 contains description of a simulation 
package which has been used for the original 
implementation. Section 6 describes a case study 
with some experiments. And finally,  
the concluding remarks are given in Section 7. 

 
2. Multiagent Networks 
 
The Multiagent Networks [16] might be defined 
as a set of dynamic entities which cooperate via 
communication network to exchange messages. 
This fact allows them to coordinate their actions 
in order to fulfill collective goal having at the 
same time limited computing resources and 
communication as well as perception 
capabilities.  

The common denominator of multiagent 
networks are the following properties: 
• autonomic entities, potentially with decision 

making and communication capabilities 
between neighbors; 

• existence of information exchange network. 
The multiagent networks are being modelled 

with the use of Graph Theory methods and 
definitions (Figure 2).  

 
Fig. 2. Example of multiagent network modelled  

as a directed graph. Nodes j and l are predecessors  
of node i [16] 

 
The following symbols are common multiagent 
network determinations: 
• 𝑥𝑖(𝑡), 𝑖𝜖𝑁 – state of node (agent) i at the 

time t; 
• 𝑁𝑖 – for undirected graph: set of neighbors 

of node i, for directed – set of predecessors; 
• 𝐼𝑖(𝑡) = �𝑥𝑗(𝑡) � 𝑗𝜖 𝑁𝑖} – information 

available to agent i at the time t; 
• 𝑥𝑖(𝑡 + 1) = 𝐹𝑖(𝑥𝑖(𝑡), 𝐼𝑖(𝑡) ) – rule to 

determine next state of agent i. 
The next sections contain description of  
the two most common use cases of multiagent 
networks: consensus and formation problems. 
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3. Aggregation method as the 
consensus algorithm 

 
The consensus algorithms are commonly used 
for the cooperative control problems in  
the multiagent systems. 

We can describe the consensus algorithm 
(protocol) as a set of interaction rules describing 
way of exchange of information between  
an agent and its neighbors. During “consensus 
process” the agent’s states are evolving over 
time. It is said that a system reached  
the consensus when values of states (that agents 
need to agree upon) are the same for every agent 
in a system.  

The proposed method for aggregation of 
agent’s states is based on the following 
consensus protocol for a static in time topology 
and discrete time [17]: 

 
𝑥𝑖(𝑡 + 1) = 1

 𝑁𝚤���+1
�𝑥𝑖(𝑡) + ∑ 𝑥𝑗(𝑡)𝑗𝜖𝑁𝑖 �     (1) 

 
Agent’s state in the next time step is an 
arithmetic mean both of his and his neighbor’s 
states. If a topology was dynamic, a set of 
neighbors would be dependent on time [16]. 

The following limit [17] describes an 
expected result of the algorithm. It should be 
equal to the arithmetic mean of all N agents’ 
states: 

lim𝑡→∞ 𝑥𝑖(𝑡) =  1
𝑁�
∑ 𝑥𝑗(0), 𝑖𝜖𝑁𝑗𝜖𝑁    (2) 

 
Figure 3 shows the example evolution of 

agreeing by agents on the value that represents  
a state of lower resolution entity. 

 
Fig. 3. Evolution of agent's states in time.  
In the end they share the same value [17] 

 

4. Disaggregation method  
as the formation control 

 
The idea of the coordination of multiple agents 
has emerged from both observation and 
simulation of a collective behavior of biological 
entities (like ants or birds). They achieve  
a complex group behavior through some 
network communication channels and an ordered 
motion coordination [8]. 

The formation control is the most popular 
and fundamental motion coordination problem in 
the multiagent systems, where agents converge 
to predefined geometric shapes. Agents need to 
obey local rules that are based on a partial 
knowledge about the position of its neighbors. 
The example of a multiagent task could be 
exploration, where a team of agents move 
according to specific formation in order to 
maximize their discovery skills.  

The formation control strategies could be 
divided in to several categories. The first one is 
based on the swarm intelligence methods, where 
agents take actions accordingly to simple and 
reactive behavior rules. They keep a distance 
from the neighbors without maintaining  
a specific position in a formation and its shape. 
The example of such strategy is Reynold’s Boid 
model [9]. The second approach is based on 
specified communication network topology 
called Formation Graph (FG) [8]. The nodes 
represent agents positions whilst the edges 
possible communication channels between 
matched pairs of agents. A specified edge weight 
refers to a relative vector of the desired position 
between agents. Figure 4 shows example of FG. 

 

 
Fig. 4. Formation Graph example [8] 

Most approaches to the formation control 
are analyzed from continuous-time point of 
view, for instance the complete FG, where exist 
a bidirectional communication between every 
pair of agents [10]. The discrete time formation 
control has been generally studied with the use 
of consensus algorithms which includes  
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a relative position vectors [11]. This paper 
considers the agents converge to the static in 
time formation patterns and a discrete-time flow. 

The formation control strategy used for  
a disaggregation is described precisely in [8].  
It is based on Formation Graph. The starting 
position for every agent is equal to a state  
of LRE.  

The desired relative position for every agent 
in a formation is described by the following 
formula:  

𝑧𝑖∗(𝑡) =  1
𝑁𝚤���
∑ (𝑧𝑗 + 𝑐𝑗𝑖)𝑗∈𝑁𝑖 , 𝑖𝜖𝑁        (3) 

 
It is based on the desired relative position 
vectors (𝑐𝑗𝑖) between an agent i and his 
predecessors. The formation control strategy 
used for the disaggregation method is a formula: 
 
𝑢𝑖(𝑡) =  𝑘(𝑧𝑖(𝑡) − 𝑧𝑖∗(𝑡)), 𝑖 = 1, … , 𝑛       (4) 

 
where k is an adjustment parameter. 
The Figure 5 shows the simulation results for FG 
from Figure 4. 
 

 
Fig. 5. Agent’s trajectories during calculation of 

desired formation positions [8] 

 
5. Discrete simulation software 

package 
 
Global trends in operation research indicate that 
computer simulation is one of the most common 
approaches to modelling cyberspace  
at the device, protocol, service and user levels.  
It increases the possibilities for quantitative and 
qualitative analysis and forecasting. It is  
a recognised alternative to experimenting with  
a real system or its physical prototype and to 
mathematical analysis. It replaces informal 
methods of reasoning based on experience and 

intuition. As a result of the development of 
computer systems, simulation has undergone  
the evolution of technologies and algorithms 
similar to typical IT systems: from a sequential 
simulation experiment performed on a stand-
alone machine, through parallel, networked to 
distributed in virtual resources (so-called cloud 
computing). However, dedicated computer 
simulators, adequate but at the same time 
universal and open to modification, are essential 
for successful simulation. In our work, we 
emphasize these two features:  
• openness to defining new algorithms for 

behaviours (activities) of objects;   
• universality, i.e. the ability to adapt to 

various types of problems and levels of 
modelling. 

We will define computer simulation as  
a quantitative and qualitative method of 
modelling in a formal language and then 
implementing in a computer program  
the features of systems (structural and 
behavioural) in order to experiment with  
the model and then study occurring processes 
during the simulation time [10]. The beginning 
of dynamic (in time meaning) computer 
simulation was the development of network 
models (Carl Adam Petri) and methods of 
system dynamics analysis (Jay W. Forrester) and 
then the languages and methods of continuous 
and discreet simulation: differential: (Lockheed 
– Digital Differential Analyzer Simulator 
DIDAS9), events (Harry Markowitz, Bernard 
Hausner – SIMSCRIPT), process interactions 
(Ole-Johan Dahl and Kristen Nygaard – 
Simula67, Knuth and McNeley – Algol SOL), 
selective activity (John Buxton and John Laski – 
Fortran CSL) and 3-phases (Keith Douglas 
Tocker – General Simulation Program GSP). 
The milestone was the language of Simula67 
which, through its concept of class and object, 
moved away from the structural approach 
commonly used at the time and becoming  
the protoplast of objectivity. The response to  
the growing simulation demand are packages 
extending general purpose languages (e.g. C#, 
Java) with simulation services (dynamic 
calculation of state variables values, time 
control, generation of random numbers, 
dispersion of processes in the network). Thanks 
to these techniques, any evolution in language 
also implies new possibilities in simulation 
applications. Simulation experiments are carried 
out not only on individual computer stations, not 
only in local networks and grids, but also  
in services provided from cloud computing.  
In the case of the Java language, the following 
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possibilities were used in the presented research: 
advanced collections of objects, functional 
interfaces and Lambda expressions, integration 
through open scripts with Groovy and Python 
languages. 

The most popular and universal type of 
simulation is still being constructive simulation 
which is based on formal models of objects and 
their implementation in computer programs.  
The original Java-based discrete simulation 
software package (named DisSim) has been 
developed in order to facilitate creating 
constructive simulation software – both discrete 
and quasi-continuous as well as hybrid. DisSim 
is an object paradigm based package. The basic 
entity is an object ‘o’ with its attributes: 
• O = {o = <id, c>}, c ∈ CO, id ∈ N – a set of 

simulated objects of ‘c’ class that are 
identified by an ‘id’ with a unique value; 

• CO – a non-empty set of classes of modelled 
objects; 

• Ac – a non-empty set of attributes specified 
for the c ∈ CO object class; 

• Va
c – a set of acceptable values of the a ∈ Ac 

attribute of the c ∈ CO objects class. 
The CO and Ac sets contain the numbers of 
modelled object classes and their attributes.  
At any time ‘t’ of the simulation time each 
measurable feature of the system is represented 
by an ordered quadruple: so,a= <o, a, v, t>.  
The state of the modelled system will be  
the vector created by all attributes of all objects 
at the simulation time t: S(t)={<o, a , v, t>}, 
o∈O. In the simulation ν ∈ Va

c values of a ∈ Ac 
attributes are determined as a result of the user-
defined state change function. The concept of 
simulation time t ∈ T is essential for a system 
model – it is a non-negative and non-decreasing 
real variable of value from T⸦R+∪{0}. For the 
defined simulation moments ti, tj, tk, for T as  
a collection of the moments when a system state 
changes there are applicable the following 
conditions: 
• for a quasi-continuous passage of time: T is  

a subset of points in a certain range of non- 
-negative real numbers such that  
∀ti,tk ∃tj (ti<tj<tk), so |tk−ti|≤ε , ∀ε>0 – for any 
two moments there is a moment between 
them; 

• for a discrete passage of time: T is a countable 
subset such that ∃ti,tk ¬∃tj (ti<tj<tk) – there are 
two such moments that there is no time 
between them. 

Consequently, along with the assumptions for 
each object there are defined: the state vector 
with attributes and either the events or 

periodically executed equations that change  
the values of attributes (and finally a state of  
the system). The term event ‘e’ from a finite set 
of events ‘E’ is understood as the algorithmic 
change in object’s state which is scheduled for  
a specific simulation moment t:   
ei=<t, fe

S(t)>, t ∈ T, i=1...2ExT, where  
fe

S: SxT→SxT. According to this idea S(t) is 
invariable over a period of time [ti, ti+1).  
On the other side we have the Runge-Kutta 
numerical algorithm for the differential 
equations calculated upon the rule “Future state 
= Present state + change after time step”.  
A sequence of chronologically (in a sense of 
simulation time) ordered change in state is  
the process of simulation. In general, it may be 
perceived as a multi-dimensional stochastic 
process where the individual elements of a state 
vector describe the various parameters of  
the system at the time t.  
The current simulation time t* is calculated 
either with the time stamp of the first event from  
the event calendar (a formula for an event-driven 
simulation) : t* = min {t: ei=< t, fe

S(t)>} or 
incrementally by a constant time step (a formula 
for step-by-step simulation) : * 1i it t t t+= = + ∆ . 
The result of an implementation in Java of  
the above model are the classes of DisSim 
package. The main classes of the package  
are presented in a simplified class diagram 
(Figure 6).  
Every o ∈ O simulation object of the c∈CO class 
inherits from the abstract BasicSimEntity class. 
Its Ac attributes store the values of the state 
vector. Each event e = <t, fe

S> is a state change 
created in objects inherited from the generic 
BasicSimStateChange class. An event is  
the result of a fe

S state change function 
implemented as the transition() method of  
the BasicSimStateChange class. The event class 
attributes include: scheduled execution time and 
priority of the status change (runSimTime, 
priority) and an optional time step 
(repetitionPeriod) for either a discrete with  
a fixed step or a quasi- continuous simulation. 
For the latter type of simulation a special 
repeatable event class RKEvent is dedicated. 
After each time step (stored in repetitionPeriod), 
the values of equations describing the system 
state are determined in the method transition(). 
The exact form of the equations has to be 
determined in Function<RKFunctParams, 
List<Double>> by the DisSim user.  
The Function is a realization of Java functional 
interface thus an user is expected to implement 
lambda expressions and method references. 
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Fig. 6. Simplified class diagram of DisSim package 

 
Moreover, DisSim is having classes 

responsible for message transmission via event 
bus, dynamic configuration of objects and open 
plug-in architecture. Additionally, as we indicate 
in previous section, an interpreter classes for 
Groovy scripts have been implemented.  
The integration between DisSim classes and 
Groovy scripts has been achieved on the base of 
GroovyScriptEngine and specialized methods  
to load/run scripts: loadScriptByName(…), 
getDeclaredMethod(method).invoke(…, …).  
For each object instance of 
BasicSimStateChange class a new algorithm  
of the method transition() might be defined in  
a separated Groovy script file.  

Finally, codes from scripts will be loaded 
into the scripts’ map in DisSim and launched by 
an interpreter during an execution of  
the transition() methods inside objects inherited 
from BasicSimStateChange and defined by  
the DisSim user.  

 
6. Case study 
 
Within scope of this paper the simulator of 
Unmanned Aerial Vehicle (UAV) teams has 
been implemented to properly test the presented 
ideas. It was developed with the use of DisSim 
package described in Section 5 and JavaFX 
library. UAV team adopts the specified 

formation according to its mission. Due to 
conservation of a computational power and  
the lack of necessity to observe individual units 
in every moment of the simulation, by default 
UAV teams are represented in an aggregated 
state (LRE). Figure 7 shows its graphical 
representation. 

The course of simulation is following.  
At the beginning, the UAV teams are in  
the aggregated state and during the task of 
patrolling a specified terrain. When the team 
receives a signal about object that requires  
an action (searching team – a rescue, attacking 
team – an elimination), the LRE flies at the place 
of the event and performs the disaggregation. 
Figure 8 and Figure 9 shows the disaggregated 
formations for the search and attacking teams 
respectively. When the team finishes its mission, 
the entity aggregates its state and returns to 
patrolling. 

The test experiments for originally 
implemented case study were made with use of 
Java method System.currentTimeMillis() which 
measures a duration of timeframe in 
milliseconds. We measure both aggregation and 
disaggregation timeframe for the different 
formations. 
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Fig. 6. UAV Simulator on aggregated level 

 

 
 

Fig. 7. Rescue formation with five nodes (agents) 

 
For needs of the tests, it has been prepared 
additional formation – “Tortoise” (Figure 11). 
The results of the experiments are collectively 
presented in Table 1.  

The network topology have huge 
significance in terms of disaggregation time. 
Attacking and searching formations have  
the same number of nodes, but different 
disaggregation times. 
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Fig. 8. Elimination formation with five nodes (agents) 
 

 
 

Fig. 9. “Tortoise” formation without “stabilization points” 
 
 

The disaggregation effectiveness is 
dependent not only on a number of nodes in  
a network, but on the way how agents are 
connected in a network as well. The attacking 
formation has central agent which acts as 
“stabilization point”.  

In this case, agents on the borders establish their 
positions relative to the neighbors, but at  
the same time they are blocking the UAVs in  
the middle of a formation which results in a long 
disaggregation time. Figure 10 shows “Tortoise” 
formation where agents are connected only to its 
closest neighbors. 
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Fig. 10. “Tortoise” formation with fifteen nodes (agents) 

 
Tab. 1. Results of experiments 

 
Attacking formation 

 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 
Aggregation 

[ms] 503 500 511 499 502 500 499 500 511 500 

Disaggregation 
[ms] 6837 7101 7101 7111 7106 7102 7113 7112 7108 7106 

Searching formation 
 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 

Aggregation 
[ms] 1005 1000 699 700 701 700 699 701 699 700 

Disaggregation 
[ms] 4825 4800 4801 4800 4799 4801 4801 4802 4800 4799 

“Tortoise” formation 
 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 

Aggregation 
[ms] 1528 1601 1599 1202 1202 1526 1601 1536 1599 1603 

Disaggregation 
[ms] 32539 35524 44561 43630 35310 32616 35742 32732 35703 43869 

 
By adding “stabilization points” between agents in the corners of formation, the acceleration of  
the process is achieved. 
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7. Conclusions 
 
The presented approach shows that multiagent 
methods seem to be promising in multiresolution 
simulation. Consensus and Formation control 
algorithms, that work upon multiagent networks, 
remove necessity to specify the complex 
algorithms for the aggregation and 
disaggregation.  

In the multiagent world it is hardly possible 
to predict and implement resolution change 
scenario for every possible situation.  
The multiagent methods allow to specify  
the general rules which give rise to complex 
behaviors. 

The conception of multiresolution 
modelling and multiagent systems are inherently 
connected. The possibility to present an entity on 
aggregated level leads to saving computational 
power what is still being the problem in large 
multiagent simulations. 

The Formation control is dependent on  
a Formation Graph specification. That implicates 
a situation of a programmer responsibility to 
ensure the effectiveness of a method. Moreover, 
the interesting idea would be to use machine 
learning methods for a formation control 
topology optimization.  

Machine learning techniques could bring 
the aggregation and disaggregation scenarios 
specification to another state. Such algorithm 
might take into consideration variables, for 
instance, related to terrain and on this basis 
might choose optimal resolution level change 
method.  
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Metoda wyznaczania stanu agentów w symulacji wieloagentowej o zmiennej 

rozdzielczości 
 

D. PIERZCHAŁA, P. CZUBA 
 
W artykule zaproponowano wieloagentowe podejście do wyznaczania stanu agenta w symulacji 
wielorozdzielczej (o zmiennej rozdzielczości) i wieloagentowej. Dwie kluczowe metody zastosowane do 
realizacji procesu agregacji i deagregacji stanów to: algorytm konsensusu i kontroli formacji. Idea koordynacji 
działań wielu agentów wyłoniła się z obserwacji oraz symulacji zbiorowych zachowań żywych istot. Algorytmy 
konsensusu są powszechnie stosowane w przypadku problemów sterowania kooperacyjnego w systemach 
wieloagentowych (konsensus oznacza osiągnięcie zgody na temat szczególnej wartości, która jest zależna od 
stanu wszystkich agentów w sieci). Natomiast kontrola formacji jest najpopularniejszym algorytmem  
w problemie koordynacji ruchu w systemach wielorobotowych, gdzie musi być spełniony warunek utrzymania 
predefiniowanego kształtu geometryczne formacji. 
Przedstawione w artykule podejście pokazuje, że metody wielodyscyplinarne wydają się bardzo obiecujące  
w symulacji wielorozdzielczej. Algorytmy konsensu i kontroli formacji eliminują konieczność definiowania 
znacznie bardziej złożonych algorytmów na potrzeby agregacji i deagregacji.  
 
Słowa kluczowe: symulacja wieloagentowa o zmiennej rozdzielczości, systemy wieloagentowe, sieci 
wieloagentowe, kontrola formacji grupy. 
 


