Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Owing to the benefits that they offer over traditional acoustic and RF communication, including higher data rates, reduced latency, and enhanced safety, underwater wireless optical communication (UWOC) systems have gained a solid focus. However, the transmission range is rather small compared with traditional radio frequency and acoustic communications because of turbulence which makes the light beam inside the water channel fade, absorb, and scatter. In this paper, a UWOC channel model mapped with LDPC and BCH error correction techniques is used to analyze the impulse response of the channel in coastal and harbor waters. The performance of the system based on its transmission length and bit error rate (BER) is evaluated. The link distance is determined to find the maximum link distance ensuring quality UWOC. The best performance has been observed with the 4-QAM-OFDM mapped channel with LDPC codes with maximum distance of 62 m in harbor water and 161.9 m in coastal water.
Słowa kluczowe
Rocznik
Tom
Strony
495--504
Opis fizyczny
Bibliogr. 40 poz., tab., rys.
Twórcy
autor
- VIT University, Vellore, India
autor
- VIT University, Vellore, India
Bibliografia
- [1] N. Saeed, A. Celik, T. Y. Al-Naffouri, and M. S. Alouini, “Underwater optical wireless communications, networking, and localization: A survey,” Ad Hoc Networks, vol. 94, 2019, https://doi.org/10.1016/j.adhoc.2019.101935
- [2] Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A Survey of Underwater Optical Wireless Communications,” IEEE Communications Surveys and Tutorials, vol. 19, no. 1. Institute of Electrical and Electronics Engineers Inc., pp. 204-238, Jan. 01, 2017, https://doi.org/10.1109/COMST.2016.2618841
- [3] Y. Guo et al., “Current Trend in Optical Internet of Underwater Things,” IEEE Photonics J., vol. 14, no. 5, pp. 1-14, 2022, https://doi.org/10.1109/JPHOT.2022.3195700
- [4] M. Salman, J. Bolboli, R. P. Naik, and W. Y. Chung, “Aqua-Sense: Relay-Based Underwater Optical Wireless Communication for IoUT Monitoring,” IEEE Open J. Commun. Soc., vol. 5, no. February, pp. 1358-1375, 2024, https://doi.org/10.1109/OJCOMS.2024.3367457
- [5] H. Zhou, M. Zhang, X. Wang, and X. Ren, “Design and Implementation of More Than 50m Real-Time Underwater Wireless Optical Communication System,” J. Light. Technol., vol. 40, no. 12, pp. 3654-3668, 2022, https://doi.org/10.1109/JLT.2022.3153177
- [6] J. Lloret, S. Sendra, M. Ardid, and J. J. P. C. Rodrigues, “Underwater wireless sensor communications in the 2.4 GHz ISM frequency band,” Sensors, vol. 12, no. 4, pp. 4237-4264, Apr. 2012, https://doi.org/10.3390/s120404237
- [7] L. J. Johnson, “The Underwater Optical Channel,” no. November, pp. 1-18, 2012, https://doi.org/10.13140/RG.2.1.1295.7283
- [8] J. W. Giles and I. N. Bankman, “Part 2 : Basic Design Considerations,” Appl. Phys., pp. 1-6.
- [9] A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton : Analysis and parameterization phytoplankton a • h ( A ) was analyzed using a data set including 815 spectra determined chlorophyll concentration range ph values wer,” J. Geophys. Res., vol. 100, no. C7, pp. 13321-13332, 1995.
- [10] H. M. Oubei et al., “Light based underwater wireless communications,” in Japanese Journal of Applied Physics, Aug. 2018, vol. 57, no. 8, https://doi.org/10.7567/JJAP.57.08PA06
- [11] [X. Sun et al., “A Review on Practical Considerations and Solutions in Underwater Wireless Optical Communication,” Journal of Lightwave Technology, vol. 38, no. 2. Institute of Electrical and Electronics Engineers Inc., pp. 421-431, Jan. 15, 2020, https://doi.org/10.1109/JLT.2019.2960131
- [12] M. A. Khalighi, C. Gabriel, T. Hamza, S. Bourennane, P. Leon, and V. Rigaud, “Underwater wireless optical communication; Recent advances and remaining challenges,” Int. Conf. Transparent Opt. Networks, pp. 2-5, 2014, https://doi.org/10.1109/ICTON.2014.6876673
- [13] H. P. Yoong, K. B. Yeo, K. T. K. Teo, and W. L. Wong, “Underwater wireless communication system: Acoustic channel modeling and carry frequency identification,” Int. J. Simul. Syst. Sci. Technol., vol. 13, no. 3 C, pp. 1-6, 2012, https://doi.org/10.5013/ijssst.a.13.3c.01
- [14] C. R. Berger, S. Zhou, J. C. Preisig, and P. Willett, “Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing,” IEEE Trans. Signal Process., vol. 58, no. 3 PART 2, pp. 1708-1721, Mar. 2010, https://doi.org/10.1109/TSP.2009.2038424
- [15] Z. Qu and M. Lai, “A Review on Electromagnetic, Acoustic, and New Emerging Technologies for Submarine Communication,” IEEE Access, vol. 12, no. December 2023, pp. 12110-12125, 2024, https://doi.org/10.1109/ACCESS.2024.3353623
- [16] F. S. Alqurashi, A. Trichili, N. Saeed, B. S. Ooi, and M. S. Alouini, “Maritime Communications: A Survey on Enabling Technologies, Opportunities, and Challenges,” IEEE Internet Things J., vol. 10, no. 4, pp. 3525-3547, 2023, https://doi.org/10.1109/JIOT.2022.3219674
- [17] L. Jan, G. Husnain, W. T. Sethi, I. U. Haq, Y. Y. Ghadi, and H. K. Alkahtani, “Empowering the Future of Hybrid MIMO-RF UOWC: Advanced Statistical Framework for Channel Modeling and Optimization for the Post-5G Era and beyond,” IEEE Access, vol. 11, no. September, pp. 106361-106373, 2023, https://doi.org/10.1109/ACCESS.2023.3314328
- [18] K. Wang et al., “Evolution of Short-Range Optical Wireless Communications,” J. Light. Technol., vol. 41, no. 4, pp. 1019-1040, 2023, https://doi.org/10.1109/JLT.2022.3215590 .
- [19] M. F. Ali, D. N. K. Jayakody, and Y. Li, “Recent Trends in Underwater Visible Light Communication (UVLC) Systems,” IEEE Access, vol. 10, pp. 22169-22225, 2022, https://doi.org/10.1109/ACCESS.2022.3150093
- [20] Z. Vali, A. Gholami, Z. Ghassemlooy, and D. G. Michelson, “System parameters effect on the turbulent underwater optical wireless communications link,” Optik (Stuttg)., vol. 198, Dec. 2019, https://doi.org/10.1016/j.ijleo.2019.163153
- [21] Y. Ata and K. Kiasaleh, “Analysis of Optical Wireless Communication Links in Turbulent Underwater Channels With Wide Range of Water Parameters,” IEEE Trans. Veh. Technol., vol. 72, no. 5, pp. 6363-6374, 2023, https://doi.org/10.1109/TVT.2023.3235823
- [22] L. Johnson, R. Green, and M. Leeson, “A survey of channel models for underwater optical wireless communication,” Proc. 2013 2nd Int. Work. Opt. Wirel. Commun. IWOW 2013, pp. 1-5, 2013, https://doi.org/10.1109/IWOW.2013.6777765
- [23] S. Tang, Y. Dong, and X. Zhang, “Impulse response modeling for underwater wireless optical communication links,” IEEE Trans. Commun., vol. 62, no. 1, pp. 226-234, 2014, https://doi.org/10.1109/TCOMM.2013.120713.130199
- [24] H. Zhang and Y. Dong, “General Stochastic Channel Model and Performance Evaluation for Underwater Wireless Optical Links,” in IEEE Transactions on Wireless Communications, Feb. 2016, vol. 15, no. 2, pp. 1162-1173, https://doi.org/10.1109/TWC.2015.2485990
- [25] J. Zhang, L. Kou, Y. Yang, F. He, and Z. Duan, “Monte-Carlo-based optical wireless underwater channel modeling with oceanic turbulence,” Opt. Commun., vol. 475, no. June, p. 126214, 2020, https://doi.org/10.1016/j.optcom.2020.126214
- [26] Y. Dong, H. Zhang, and X. Zhang, “On impulse response modeling for underwater wireless optical MIMO links,” 2014 IEEE/CIC Int. Conf. Commun. China, ICCC 2014, no. 2, pp. 151-155, 2015, https://doi.org/10.1109/ICCChina.2014.7008262
- [27] Y. Li, M. S. Leeson, and X. Li, “Impulse response modeling for underwater optical wireless channels,” Appl. Opt., vol. 57, no. 17, p. 4815, Jun. 2018, https://doi.org/10.1364/ao.57.004815
- [28] W. Cox and J. Muth, “Simulating channel losses in an underwater optical communication system,” J. Opt. Soc. Am. A, vol. 31, no. 5, p. 920, May 2014, https://doi.org/10.1364/josaa.31.000920
- [29] C. T. Geldard, E. Guler, A. Hamilton, and W. O. Popoola, “An Empirical Comparison of Modulation Schemes in Turbulent Underwater Optical Wireless Communications,” J. Light. Technol., vol. 40, no. 7, pp. 2000-2007, 2022, https://doi.org/10.1109/JLT.2021.3134090
- [30] K. Nakamura, I. Mizukoshi, and M. Hanawa, “Optical wireless transmission of 405 nm, 145 Gbit/s optical IM/DD-OFDM signals through a 48 m underwater channel,” Opt. Express, vol. 23, no. 2, p. 1558, 2015, https://doi.org/10.1364/oe.23.001558
- [31] H. Lu, M. Jiang, and J. Cheng, “Deep Learning Aided Robust Joint Channel Classification, Channel Estimation, and Signal Detection for Underwater Optical Communication,” IEEE Trans. Commun., vol. 69, no. 4, pp. 2290-2303, 2021, https://doi.org/10.1109/TCOMM.2020.3046659
- [32] J. Xu et al., “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun., vol. 369, pp. 100-105, 2016, https://doi.org/10.1016/j.optcom.2016.02.044
- [33] Y. Ata, J. Yao, and O. Korotkova, “BER variation of an optical wireless communication system in underwater turbulent medium with any temperature and salinity concentration,” Opt. Commun., vol. 485, no. October 2020, p. 126751, 2021, https://doi.org/10.1016/j.optcom.2021.126751
- [34] R. Cai, M. Zhang, D. Dai, Y. Shi, and S. Gao, “Analysis of the underwater wireless optical communication channel based on a comprehensive multiparameter model,” Appl. Sci., vol. 11, no. 13, 2021, https://doi.org/10.3390/app11136051
- [35] Y. Guo et al., “Diffused-line-of-sight communication for mobile and fixed underwater nodes,” IEEE Photonics J., vol. 12, no. 6, 2020, https://doi.org/10.1109/JPHOT.2020.3030544
- [36] X. Huang, F. Yang, and J. Song, “Hybrid LD and LED-based underwater optical communication: state-of-the-art, opportunities, challenges, and trends [Invited],” Chinese Opt. Lett., vol. 17, no. 10, p. 100002, 2019, https://doi.org/10.3788/col201917.100002
- [37] B. R. Angara, P. Shanmugam, and H. Ramachandran, “Underwater Wireless Optical Communication System Channel Modelling With Oceanic Bubbles and Water Constituents Under Different Wind Conditions,” IEEE Photonics J., vol. 15, no. 2, pp. 1-11, 2023, https://doi.org/10.1109/JPHOT.2023.3258500
- [38] Y. Lou, J. Cheng, D. Nie, and G. Qiao, “Performance of Vertical Underwater Wireless Optical Communications with Cascaded Layered Modeling,” IEEE Trans. Veh. Technol., vol. 71, no. 5, pp. 5651-5655, 2022, https://doi.org/10.1109/TVT.2022.3156388
- [39] H. Chen et al., “Toward Long-Distance Underwater Wireless Optical Communication Based on A High-Sensitivity Single Photon Avalanche Diode,” IEEE Photonics J., vol. 12, no. 3, Jun. 2020, https://doi.org/10.1109/JPHOT.2020.2985205
- [40] S. Jaruwatanadilok, “Channel Modeling and Performance Evaluation using Vector Radiative Transfer Theory,” IEEE J. Sel. Areas Commun., vol. 26, no. 9, pp. 1620-1627, 2008, [Online]. Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4686801
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7da65d90-3627-4f7b-9f9b-d6ff088127e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.