PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pilot Tests of a Hybrid Solar Installation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article is devoted to the study of the efficiency of the structural elements of the solar collector in cloudy conditions with the stabilization of heat transfer due to the use of terrestrial radiation. The study involves experimental verification of theoretically obtained assumptions about the use of terrestrial radiation to improve the efficiency of the solar installation. Proposed a hybrid version of a solar installation using solar and terrestrial radiation. Based on the results of laboratory and field experimental tests, the efficiency of the offered hybrid installation is confirmed, positive results from short-term compensations of decrease in solar irradiation, e.g., due to clouds, are received. In addition to the known characteristics of heat collectors, for a hybrid installation, such a design parameter as the ratio of the heat capacity of the accumulator and the collector seems to be essential. The increase in the indicator characterizes the increase in the time of effective operation in the presence of clouds. The tests showed a significant impact on the operation of the installation of external factors such as the position of the Sun, ambient temperature, wind speed, etc. This will be taken into account in the further justification of the design of the hybrid installation and its parameters.
Twórcy
  • Donetsk National Technical University, Shybankova Sq., 2, Pokrovs'k, Donetsk region, 85300, Ukraine
  • Donetsk National Technical University, Shybankova Sq., 2, Pokrovs'k, Donetsk region, 85300, Ukraine
  • Donetsk National Technical University, Shybankova Sq., 2, Pokrovs'k, Donetsk region, 85300, Ukraine
  • Cherkasy Institute of Fire Safety named after Chornobyl Heroes of National University of Civil Defence of Ukraine, Onoprienko St., 8,Cherkasy, 18034, Ukraine
  • Cherkasy Institute of Fire Safety named after Chornobyl Heroes of National University of Civil Defence of Ukraine, Onoprienko St., 8,Cherkasy, 18034, Ukraine
autor
  • Cherkasy Institute of Fire Safety named after Chornobyl Heroes of National University of Civil Defence of Ukraine, Onoprienko St., 8,Cherkasy, 18034, Ukraine
Bibliografia
  • 1. Ahmadlouydarab M., Ebadolahzadeh M., Ali H. M. 2020. Effects of utilizing nanofluid as working fluid in a lab-scale designed FPSC to improve thermal absorption and efficiency. Physica A: Statistical Mechanics and its Applications, 540(3), 123109.
  • 2. Bellos E., Tzivanidis C., Belessiotis V. 2017. Daily performance of parabolic trough solar collectors. Solar Energy, 158, 663-678.
  • 3. Debnath S., Das B., Randive P., Pandey K. 2018. Performance analysis of solar air collector in the climatic condition of North Eastern India. Energy, Elsevier, 165(PB), 281-298.
  • 4. Faizal M., Saidur R., Mekhilef S., Alim M.A. 2013. Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector. Energy Conversion and Management, 76, 162-168.
  • 5. Georgiev A., Popov R., Toshkov E. 2020. Investigation of a hybrid system with ground source heat pump and solar collectors: Charging of thermal storages and space heating. Renewable Energy, 147(2), 2774-2790.
  • 6. Haghighi A., Albojamal A.; Vafai K. 2020. Heat removal enhancement in a channel with a single or an array of metallic foam obstacles. International Journal of Thermal Sciences, 149, 106057.
  • 7. Kostenko V.K., Lyashok Ya.O., Zavialova O.L., Shkrylʹova S.M., Briantseva A.O. 2020. Solar collector with heat accumulator. Patent for an invention 121368, Ukraine.
  • 8. Kostenko V.K., Zavialova O.L., Shkrylʹova S.M., Korostylʹov O.S. 2018. Solar thermal collector. Patent for utility model 133597, Ukraine.
  • 9. Li Z.X., Ehyaei M.A., Kasmaei H. K., Ahmadi A., Costa V. 2019. Thermodynamic modeling of a novel solar powered quad generation system to meet electrical and thermal loads of residential building and syngas production. Energy Conversion and Management, 199, 111982.
  • 10. Mirmanto M., Wirawan M., Saputra B.H. 2016. Effect of a Pipe Number on The Heat Transfer Rate for a Granite Stone Absorber Solar Collector. Jurnal Mechanical, 7(1), 46-51.
  • 11. Moslemi H.R., Keshtkar M.M. 2018. Sensitivity analysis and thermal performance optimization of evacuated U-tube solar collector using genetic algorithm. International Journal of Heat and Technology, 36(4), 1193-1202.
  • 12. Panagiotidou M., Aye L., Rismanchi B. 2020. Solar driven water heating systems for medium-rise residential buildings in urban mediterranean areas. Renewable Energy, 147(1), 556-569.
  • 13. Prabhakar J., Biplab D., Rajat G. 2019. An experimental study of a photovoltaic thermal air collector (PVTAC): A comparison of a flat and the wavy collector. Applied Thermal Engineering, 163, 114344.
  • 14. Roskosch D., Venzik V., Atakan B. 2020. Potential analysis of pumped heat electricity storages regarding thermodynamic efficiency. Renewable Energy, 147(3), 2865-2873.
  • 15. Sukhyy К.М., Kozlov Ya. М. Belyanovskaya E.A., Prokopenko E.М., Sukha І.V., Doroshenko A.V. 2018. Operating characteristics of polymeric solar collectors for adsorptive chilling solar plants. Refrigeration Engineering and Technology, 54(1), 15-20.
  • 16. Zhang T., Yan Z. W., Xiao L. 2019. Experimental, study and design sensitivity analysis of a heat pipe photovoltaic/thermal system. Applied Thermal Engineering, 162, 114318.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d991978-0c0b-49a3-aa0d-b89bc48bd1db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.