
Computer Applications in Electrical Engineering
Vol. 14 2016

DOI 10.21008/j.1508-4248.2016.0001

1

Positive electrical circuits with zero transfer matrices 
and their discretization

Tadeusz Kaczorek
Bialystok University of Technology

15–351 Bialystok, ul. Wiejska 45D, e–mail: kaczorek@ee.pw.edu.pl

Positive continuous–time and discrete–time linear electrical circuits with zero 
transfer matrices are addressed. It is shown that there exists a large class of positive 
electrical circuits with zero transfer matrices. The electrical circuits are unreachable, 
unobservable and unstable for all values of the resistances, inductances and 
capacitances. The discrete–time linear positive electrical circuits are introduced. It is 
shown that: 1) the discrete–time electrical circuit is asymptotically stable for all values 
of the discretization step if and only if the corresponding continuous–time electrical 
circuit is asymptotically stable; 2) the discretization of the continuous–time electrical 
circuit does not change their reachability, observability and transfer matrices.
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1. Introduction

A dynamical system is called positive if its trajectory starting from any 
nonnegative initial state remains forever in the positive orthant for all nonnegative 
inputs. An overview of state of the art in positive systems theory is given in 
the monographs [5, 12]. Variety of models having positive behavior can be found 
in engineering, economics, social sciences, biology and medicine, etc.

The notion of controllability and observability and the decomposition of 
linear systems have been introduced by Kalman [25, 26]. These notions are the 
basic concepts of the modern control theory [1, 23, 24, 27]. They have been also 
extended to positive linear systems [5, 12]. The decomposition of the pair (A, B)
and (A, C) of the positive discrete–time linear system has been addressed in [9]. 
The positive circuits and their reachability has been investigated in [13, 23] and 
controllability and observability of electrical circuits in [8, 23].

The reachability of linear systems is closely related to the controllability of 
the systems. Specially for positive linear systems, the conditions for the 
controllability are much stronger than for the reachability [12, 23]. Tests for the 
reachability and controllability of standard and positive linear systems are given 
in [12, 17, 23]. The positivity and reachability of fractional continuous–time 
linear systems and electrical circuits have been addressed in [11, 13, 15, 19, 23].
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Decoupling zeros of positive discrete–time linear systems have been introduced 
in [10].

Stability of fractional linear 1D discrete–time and continuous–time systems 
has been investigated in the papers [2, 3, 21], and of 2D fractional positive 
linear systems in [6]. The notion of practical stability of positive fractional 
discrete–time linear systems has been introduced in [16], and the positive linear 
systems consisting of n subsystems with different fractional orders has been 
analyzed in [14]. Some recent interesting results in the fractional systems theory 
and its applications can be found in [4, 20]. The reachability and observability 
of fractional positive continuous–time linear systems have been addressed in 
[18] and constructability and observability of standard and positive electrical 
circuits in [7].

In this paper the positive continuous–time and discrete–time electrical 
circuits with zero transfer matrices will be addressed.

The paper is organized as follows. In section 2 the basic definitions and 
theorems concerning the positivity, reachability and observability of electrical 
circuits are recalled. Positive electrical circuits with zero transfer matrices are 
presented in section 3. Positive discrete–time electrical circuits are analysed in 
section 4. The reachability, observability and transfer matrices of discrete–time 
linear systems are addressed in section 5. Concluding remarks are given in 
section 6.

The following notation will be used: is the set of real numbers, mn

represents the set of mn real matrices, mn denotes the set of mn matrices 
with nonnegative and 1nn , nM stand for the set of nn Metzler 
matrices (real matrices with nonnegative off–diagonal entries), nI is the nn
identity matrix.

2. Positivity, reachability and observability of electrical circuits

Consider linear electrical circuits composed of resistors, capacitors, coils and 
voltage (current) sources. As the state variables (the components of the state 
vector )(tx ) we choose the voltages on the capacitors and the currents in the 
coils. Using Kirchhoff’s laws we may describe the linear circuits in transient 
states by the state equations

)()()( tButAxtx , (1a)
)()( tCxty , (1b)

where ntx )( , mtu )( , pty )( are the state, input and output vectors 
and nnA , mnB , npC .
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Definition 1. [12, 23] The linear electrical circuit (1) is called (internally) 
positive if the state vector ntx )( and output vector pty )( , 0t for any 
initial conditions nx )0( and all inputs mtu )( , 0t .
Theorem 1. [5, 12, 23] The linear electrical circuit is positive if and only if

nMA , mnB , npC . (2)
Definition 2. [5, 12, 23] The positive electrical circuit (1) is called reachable in 
time ],0[ ftt if for every given final state n

fx there exists an input 
mtu )( , ],0[ ftt which steers the state of the electrical circuit from zero 

initial conditions 0)0(x to the final state fx .

Definition 3. [12] A matrix nnA is called monomial if each its row and 
each its column contains only one positive entry and the remaining entries are 
zero.
Theorem 2. [12, 23] The positive electrical circuit (1) is reachable if and only if 
the reachability matrix

nmnn
n BAABBR ][ 1 (3)

contains a monomial matrix.
Definition 4. [12, 23] The positive electrical circuit (1) is called observable in 
time ],0[ ftt if knowing its input mtu )( and its input pty )( for 

],0[ ftt it is possible to find its unique initial condition nxx )0(0 .
Theorem 3. [12, 23] The positive electrical circuit (1) is observable in time 

],0[ ftt if and only if the matrix nMA is diagonal and the matrix

npn

n

n

CA

CA
C

O

1

(4)

contains a monomial matrix.
The transfer matrix of the positive electrical circuit (1) is given by

)(][)( 1 sBAsICsT mp
n , (5)

where )(smp is the set of mp rational matrices in s.
Theorem 4. [10, 12] If the pair (A,B) of the standard electrical circuit (1) is not 
reachable then some pole–zero cancellations occur in

]det[
]adj[
AsI

BAsI

n

n . (6)

If the pair (A,C) of the standard electrical circuit (1) is not observable then some 
pole–zero cancellations occur in
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]det[
]adj[

AsI
AsIC

n

n , (7)

where ]adj[ AsI n denotes the adjoint matrix of ][ AsI n .
Theorem 5. If for the standard electrical circuit (1)

0][)( 1 BAsICsT n (8)
then

0nn RO , (9)
where nO and nR are defined by (4) and (3), respectively.
Proof. Proof is given in [22].
Theorem 6. Let for the standard electrical circuit (1) the condition (8) be 
satisfied. Then

1) the pair (A,B) is unreachable if 0C ,
2) the pair (A,C) is unobservable if 0B .

Proof. Proof is given in [22].

3. Linear electrical circuits with zero transfer matrices

Example 1. Consider the electrical circuit shown in Fig. 1 with given 
resistances 1R , 2R , 3R inductance L, capacitance C and voltage source e.

Fig. 1. Electrical circuit of Example 1

Using Kirchhoff’s laws we may write the equations

.0

,
2

, 32
1

dt
duCi

RRRR
dt
diLRie

C
C

L
L

(10)

As the output y we choose
Cuy . (11)

The equations (10) and (11) can be rewritten in the form
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,11 eB
i
u

A
i
u

dt
d

L

C

L

C

L

C

i
u

Cy 1 , (12a)

where

L
RA 0

00
1 ,

L
B 1

0
1 , ]01[1C . (12b)

By Theorem 1 the electrical circuit is positive for all values of 1R , 2R , 3R , L
and C since from (12b) we have

21 MA , 2
1B , 21

1C . (13)
The transfer function of the electrical circuit is

01
0

0
0

]01[][)(
1

1
1

121

LL
Rs

s
BAsICsT (14)

for all values of 1R , 2R , 3R , L and C.
Note that

L
Rss

L
Rs

s
AsIn 0

0
]det[ 1 , 01s ,

L
Rs2 (15)

and the electrical circuit is unstable for all values of 1R , 2R , 3R , L and C .
By Theorems 2 and 3 the positive electrical circuit with (12b) is unreachable 
and unobservable since the matrices

2
1112 1

00
][

L
R

L
BABR ,

00
01

11

1
2 AC

C
O (16)

have only one monomial column and one monomial row, respectively. From 
(16) we have

00
001

00

00
01

2
22

L
R

L
RO . (17)

In general case the class of positive electrical circuits with zero transfer matrix 
can be presented in the form shown in Fig. 2.
Theorem 7. The class of electrical circuits shown in Fig. 2 are positive 
electrical circuits with zero transfer functions if and only if their common parts 
are positive electrical circuits.
An example of positive electrical circuit with zero transfer matrix for 

121 nn is given in the following example.
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Example 2. Consider the electrical circuit shown in Fig. 3 with given 
resistances kR , 9,...,1k , inductances iL , 4,...,1i , capacitances 1C , 2C and 
voltage sources je , 3,2,1j .

Fig. 2. Positive electrical circuit with zero transfer matrix

Fig. 3. Positive electrical circuit
Using Kirchhoff’s laws we may write the equations
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.0

,0

,
2

,

,
2

,

,)(

,)(

4
4

1
1

98
722

2
222

65
431

3
331223

2
233232112

1
1221211

4 dt
diLu

dt
duCi

RRRRu
dt

duCRe

RRRRR
dt
diLiRiRe

dt
diLiRiRRiRe

dt
diLiRiRRe

L

C

(18a)

As the output we choose

4

1

i
u

y . (18b)

The equations (18) can be written in the form

,

,

4

3

2

1

2

1

3

2

1

4

3

2

1

2

1

4

3

2

1

2

1

i
i
i
i
u
u

Cy

e
e
e

B

i
i
i
i
u
u

A

i
i
i
i
u
u

dt
d

(19a)

where



T. Kaczorek / Positive electrical circuits with zero transfer matrices and their…

8

.
100000
000001

,

000

100

010

001

010
000

,

000000

0000

000

0000

000010
000000

3

2

1

22

2

1

3

2

2

3

2

32

2

1

1

2

1

21

22

C

L

L

L

CR

B

L
R

L
R

L
R

L
RR

L
R

L
R

L
RR

CR

A

(19b)

Note that the electrical circuit is positive for all values of the resistances, 
inductances and capacitances since 6MA , 36B and 62C . It is easy 
to check that the transfer matrix of the positive electrical circuit
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(20)
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and the circuit is unstable for all values of the resistances, inductances and 
capacitances since the matrix A has two zero rows. In general case we have the 
following conclusion.
Conclusion 1. The number of zero rows of the matrix A is equal to the number 
of outputs of the system.

4. Discretization and positive discrete–time electrical circuits

Consider the linear electrical circuits described by (1). Applying the 
approximation

h
xx

h
txhtxtx ii 1)()()( , ,...}1,0{Zi (21)

to (1) we obtain the corresponding discrete–time electrical circuit described by 
the equations

ididi uBxAx 1 , (22a)

idi xCy , (22b)
where )()( hixtxxi , )(1 htxxi , )(tuui , )(tyyi , 0h and

hAIA nd , hBBd , CCd . (22c)
Definition 5. [12] The discrete–time electrical circuit (22) is called (internally) 
positive if n

ix , p
iy , Zi for any initial conditions nx0 and all 

m
iu , Zi .

Theorem 8. The discrete–time electrical circuit (22) is positive if and only if
nn

dA , mn
dB , np

dC . (23)
Proof. Proof is given in [12, 20].
Theorem 9. The discrete–time electrical circuit (22) is positive if and only if the 
continuous–time electrical circuit (1) is positive and

iii
a

h
max

1 , (24)

where iia , ni ,...,1 are the diagonal entries of the matrix nMA .
Proof. From (22c) it follows that nn

dA if and only if nMA and the 
condition (24) is satisfied. 
It is well–known that the eigenvalues lz , nl ,...,1 of the matrix nn

dA are 
related with the eigenvalues ls , nl ,...,1 of the matrix nnA by

ll hsz 1 , nl ,...,1 . (25)
Theorem 10. The discrete–time electrical circuit (22) is asymptotically stable 
for 0h if and only if the continuous–time electrical circuit (1) is 
asymptotically stable.
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Proof. Let lll js , nl ,...,1 , then the discrete–time electrical circuit (22) 
is asymptotically stable if and only if

1)()(21)()1(1 222222
lllllll hhhhhhsz (26)

or
0)(2 22

lll h (27)
and

22
2

ll

lh , nl ,...,1 . (28)

From (28) it follows that 0h if and only if 0l , nl ,...,1 , i.e. the 
electrical circuit (1) is asymptotically stable.

5. Reachability, observability and transfer matrices of discrete–time 
electrical circuits

In this section it will be shown that the discretization of the continuous–time 
electrical circuits does not change their reachability and observability.
Definition 6. [12] The discrete–time electrical circuit (22) is called reachable in 
q steps if for every given final state n

fx there exists an input sequence 
m

quuu 110 ,...,, which steers the state from zero initial state 0x to the final 
state fx .
Theorem 11. The discrete–time electrical circuit (22) is reachable in q steps if 
and only if

nBABABR d
q
ddddq ]rank[rank 1 . (29)

Proof. Proof is similar to the proof given in [22].
Definition 7. [12] The discrete–time electrical circuit (22) is called observable 
in q steps if knowing its input sequence 110 ,...,, quuu and output sequence 

110 ,...,, qyyy it is possible to find its unique initial condition 0x .
Theorem 12. The discrete–time electrical circuit (22) is observable in q steps if 
and only if

n

AC

AC
C

O

q
dd

dd

d

q

1

rankrank . (30)

Proof. Proof is given in [22].
Theorem 13. The discrete–time electrical circuit (22) is reachable in q steps if 
and only if the continuous–time electrical circuit (1) is reachable in q steps.
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Proof. By Theorem 11 the discrete–time electrical circuit (22) is reachable in q
steps if and only if

nBABAB d
q
dddd ]rank[ 1 . (31)

Substitution of (22c) into (31) yields

]rank[

00

)1(0
][rank

])()(rank[

1

22
1

1

BAABB

hI

hIqhI
hIhIhI

BAABB

hBhAIhBhAIhB

q

q
n

nn

nnn

q

q
nn

(32)

since the matrix

q
n

nn

nnn

hI

hIqhI
hIhIhI

00

)1(0 22

(33)

is nonsingular for any 0h .
Theorem 14. The discrete–time electrical circuit (22) is observable in q steps if 
and only if the continuous–time electrical circuit (1) is observable in q steps.
Proof. Proof is similar to the proof of Theorem 13.
Theorem 15. The transfer matrix )(zTd of the discrete–time electrical circuit 
(22) is zero if and only if the transfer matrix )(sT of the continuous–time 
electrical circuit (1) is zero.
Proof. The transfer matrix )(zTd of (22) is given by

ddndd BAzICzT 1][)( . (34)
Substituting (22c) and (25) into (34) we obtain

).(][

)]([][)(
1

11

sTBAsIC

BAsIhChBhAIshIICzT

n

nnnnd (35)

Therefore, 0)(zTd if and only if 0)(sT .
The considerations can be easily extended to the positive electrical circuits.

6. Concluding remarks

Positive continuous–time and discrete–time linear systems with zero transfer 
matrices have been addressed. It has been shown that there exists a large class 
of positive electrical circuits with zero transfer matrices (Theorem 7). The 
electrical circuits are unreachable, unobservable and unstable for all values of 
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the resistances, inductances and capacitances (Theorems 5 and 6). The discrete–
time linear positive electrical circuits have been introduced and their positivity 
and asymptotic stability have been investigated (Theorem 9). It has been shown 
that: 1) the discrete–time electrical circuit is asymptotically stable if and only if 
the continuous–time electrical circuit is asymptotically stable (Theorem 10);
2) the discrete–time electrical circuit is reachable (observable) if and only if the 
continuous–time if and only if the continuous–time electrical circuit is reachable 
(observable) (Theorems 13 and 14); 3) the transfer matrix of discrete–time 
electrical circuit is zero if and only if the transfer matrix of continuous–time 
electrical circuit is zero (Theorem 15).

The considerations can be extended to the fractional positive electrical 
circuits with zero transfer matrices.
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