PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulation of deformation and fragmentation of fractal-like nanoaggregates

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aflexible fractal-like aggregate modelwas used to study deformation and fragmentation of the structure of fractal-like aggregates via their impaction with rigid rough surface.Aggregateswere conveyed one at the time towards a surface under vacuum conditions. The number of primary particles remaining in each fragment, ratio of average fragment radius of gyration after impaction to the average fragment initial radius of gyration and ratio of average coordination number to the initial coordination number were monitored for each individual aggregate. Results demonstrate that depending on the impact velocity, the fractal dimension of the aggregate, the strength of bonds between primary particles, the stiffness of the aggregate structure and the diameter of primary particle composing an aggregate, restructuring or breakage of the aggregate occur. Moreover, in the analysis of the ratio of coordination number of aggregates after impaction to the initial coordination number, three regimes were distinguished: first no deformation at low impact velocities, second restructurisation regime and finally fragmentation regime where partial or total fragmentation of aggregates was observed.
Rocznik
Strony
377–--397
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
  • Polish Academy of Sciences, Institute of Fundamental Technological Research, ul. Pawińskiego 5B, 02-106 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. Allen M.P., Tildesley D.J., 1987. Computer simulation of liquids. Oxford Clarendon Press, New York.
  • 2. Bałazy A., Podgórski A., 2007. Deposition efficiency of fractal-like aggregates in fibrous filters calculated using Brownian dynamics method. J. Colloid Interface Sci., 311, 323–337. DOI: 10.1016/j.cis.2007.03.008.
  • 3. Becker V., Schlauch E., Behr M., Briesen H., 2009. Restructuring of colloidal aggregates in shear flows and limitations of the free-draining approximation. J. Colloid Interface Sci., 339, 362–372. DOI: 10.1016/j.cis.2009.07.022.
  • 4. Cundall P.A., 1971. The measurement and analysis of accelerations in the rock slopes. Ph.D. thesis, Imperial College, London.
  • 5. Cundall P.A., Strack O.D.L., 1979. A discrete numerical model for granular assemblies. Géotechnique, 29, 47–65. DOI: 10.1680/geot.1979.29.1.47.
  • 6. Dai Q., 2010. Prediction of dynamic modulus and phase angle of stone-based composites using a micromechanical finite-element approach. J. Mater. Civ. Eng., 22, 618–627. DOI: 10.1061/(ASCE)MT.1943-5533.0000062.
  • 7. Derjaguin B.V., Muller V.M., Toporov Y.P., 1975. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci., 53, 314–326. DOI: 10.1016/0021-9797(75)90018-1.
  • 8. Dominik C., Tielens A.G.G.M., 1997. The physics of dust coagulation and the structure of dust aggregates in space. Astrophys. J., 480, 647–673. DOI: 10.1086/303996.
  • 9. Ermak D.L., McCammon J.A., 1978. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys., 69, 1352–1360. DOI: 10.1063/1.436761.
  • 10. Friedlander S.K., Jang H.D., Ryu K., 1998. Elastic behaviour of nanoparticle chain aggregates. App. Phys. Lett., 72, 173–175. DOI : 10.1063/1.120676.
  • 11. Friedlander S.K., 1999. Polymer-like behavior of inorganic nanoparticle chain aggregates. J. Nanopart. Res., 1, 9–15. DOI: 10.1023/A:1010017830037.
  • 12. Friedlander S.K., 2000. Smoke, dust, and haze: Fundamentals of aerosol dynamics. Oxford University Press, New York.
  • 13. Froeschke S., Kohler S., Weber A.P., Kasper G., 2003. Impact fragmentation of nanoparticle agglomerates. J. Aerosol Sci., 34, 275–287. DOI: 10.1016/S0021-8502(02)00185-4.
  • 14. Gao G., 1998. Large scale molecular simulations with application to polymers with nano-scale materials. Ph.D. Thesis, California Institute of Technology.
  • 15. Grzybowski K., Itoh H., Gradoń L., 2009. Restructurization of nanoaggregates in the impact breakage process. Chem. Process Eng., 30, 99–110.
  • 16. Guingo M., Minier J.P., 2008. A new model for the simulation of particle resuspension by turbulent flows based on a stochastic description of wall roughness and adhesion forces. J. Aerosol Sci., 39, 957–973. DOI: 10.1016/jaerosci. 2008.06.007.
  • 17. HaradaS.,TanakaR.,NogamiH.,SawadaM.,2006.Dependenceoffragmentationbehaviourofcolloidalaggregates on their fractal structure. J. Colloid Interface Sci., 301, 123–129. DOI: 10.1016/j.cis.2006.04.051.
  • 18. Ilmura K., Nakagawa H., Higashitani K., 1998. Deformation of aggregates depositing on a plate in a viscous fluid simulated by a modified discrete element method. Adv. Powder Techn., 9, 345–361. DOI: 10.106/S09218831(08)60565-8.
  • 19. Ilmura K., Watanabe S., Suzuki M., Hirota M., Higashitani K., 2009. Simulation of entrainment of agglomerates from plate surfaces by shear flows. Chem. Eng. Sci., 64, 1455–1461. DOI: 10.106/j.ces.2008.10.070.
  • 20. Ihalainen M., Lind T., Torvela T., Lehtinen K.E.J., Jokiniemi J., 2012. A method to study agglomerate breakup and bounce during impaction. Aerosol Sci. Techn., 46, 990–1001. DOI: 10.1080/02786826.2012.685663.
  • 21. Ihalainen M., Lind T., Arffman T., Torvela A,. Jokiniemi J., 2014. Break-up and bounce of TiO2 agglomerates by impaction. Aerosol Sci. Techn., 48, 31–41. DOI: 10.1080/02786826.2013.852155.
  • 22. Isella L., Drossinos Y., 2011, On the friction coefficient of straight-chain aggregates. J. Colloid Interface Sci., 356, 505–512. DOI: 10.1016/j.cis.2011.01.072.
  • 23. Johnson K.L., Kendall K., Roberts A.D., 1971. Surface energy and the contact of elastic solids. Proc. Royal Soc. London A, 324, 301–313. DOI: 10.1098/rspa.1971.0141.
  • 24. John W., Sethi V., 1993. Breakup of latex doublets by impaction. Aerosol Sci. Technol., 19, 57–68. DOI: 10.1080/ 02786829308959621
  • 25. KafuiK.D.,ThorntonC.,1993.Computersimulatedimpactofagglomerate.In:ThorntonC.(Ed.)Powders&Grains 93, the Proceedings of the Second International Conference on Micromechanics of Granular Media. A. Balkema, Rotterdam, pp. 401–406.
  • 26. Moreno R., Ghadiri M., Antony S.J., 2003. Effect of the impact angle on the breakage of agglomerates: a numerical study using DEM. Powder Technol., 130, 132–137. DOI: 10.1016/S0032-5910(02)00256-5.
  • 27. Moreno-Atanasio R., Ghadiri M., 2006. Mechanistic analysis and computer simulation of impact breakage of agglomerates: Effect of surface energy. Chem. Eng. Sci., 61, 2476–2481. DOI: 10.1016/j.ces.2005.11.019.
  • 28. Pantina J.P., Furst E.M., 2005. Elasticity and critical bending moment of model colloidal aggregates. Phys. Rev. Lett., 94, 138301. DOI: 10.1103/PhysRevLett.94.138301.
  • 29. Przekop R., Grzybowski K., Gradoń L., 2004. Energy-balanced oscillatory model fordescription of particles depositionandre-entrainmentonfibercollector.AerosolSci.Technol.,38,330–337.DOI:10.1080/027868204904227669.
  • 30. Reeks M.W., Reed J., Hall D., 1988. On the resuspension of small particles by a turbulent flow. J. Phys. D: Appl. Phys., 21, 574–589.
  • 31. Rennecke S., Weber A.P., 2013. The critical velocity for nanoparticle rebound measured in a low pressure impactor. J. Aerosol Sci., 58, 135–147. DOI: 10.1016/j.jaerosci.2012.12.007.
  • 32. Rothenbacher S., Messerer A., Kasper G., 2008. Fragmentation and bond strength of airborne diesel soot agglomerates. Part. Fibre Toxicol., 5, 9. DOI: 10.1186/1743-8977-5-9.
  • 33. Seipenbusch M., Toneva P., Peukert W., Weber, A.P., 2007. Impact fragmentation of metal nanoparticle agglomerates. Part. Part. Syst. Char., 24, 193–200. DOI: 10.1002/ppsc.200601089.
  • 34. Seipenbusch M., Rothenbacher S., Kirchhoff M., Schmid H.J., Kasper G., Weber A.P., 2010. Interparticle forces in silica nanoparticle agglomerates. J. Nanopart. Res., 12, 2037–2044. DOI: 10.1007/s11051-009-9760-5.
  • 35. Seizinger A., Speith R., Kley W., 2012. Compression behavior of porous dust agglomerates. Astron. Astrophys., 541, A59. DOI: 10.1051/0004-6361/201218855.
  • 36. Strobel R., Pratsinis S.E., 2007. Flame aerosol synthesis of smart nanostructured materials. J. Mater. Chem., 17, 4743–4756. DOI: 10.1039/B711652G.
  • 37. Tamadondar M.R., Rasmuson A., Thalberg K., Niklasson B.I., 2017. Numerical modeling of adhesive particle mixing. AIChE J., 63, 2599–2609. DOI: 10.1002/aic.15654.
  • 38. Thornton C., Yin K.K., Adams M.J., 1996. Numerical simulation of the impact fracture and fragmentation of agglomerates. J. Phys. D: Appl. Phys., 29, 424–435. DOI: 10.1088/0022-3727/29/2/021.
  • 39. Vainshtein P., Ziskind G., Fichman M., Gutfinger C., 1997. Kinetic model of particle resuspension by drag force. Phys. Rev. Lett., 78, 551–554. DOI: 10.1103/PhysRevLett.78.551.
  • 40. Walker P.M.B. (Ed.), 1988. Chambers science and technology dictionary. Chambers Harrap Publishers, London.
  • 41. Wittel F.K., Carmona H.A., Kun F., Herrmann H.J., 2008. Mechanisms in impact fragmentation. Int. J. Fract., 154, 105–117. DOI: 10.1007/s10704-008-9267-6.
  • 42. Witten T.A., Sander L.M., 1981. Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett., 47, 1400–1403. DOI: 10.1103/PhysRevLett.47.1400.
  • 43. ZhangY.,MaT.,LuoX.,HuangX.M.,LyttonR.L.,2019.PredictionofdynamicshearmodulusoffineaggregatematrixusingdiscreteelementmethodandmodifiedHirschmode.Mech.Mater.,138,103148.DOI:10.1016/j.mechmat. 2019.103148.
  • 44. Ziskind G., Fichman M., Gutfinger C., 2000. Particle behavior on surfaces subjected to external excitations. J. Aerosol Sci., 31, 703–719. DOI: 10.1016/S0021-8502(99)00554-6.
  • 45. Żywczyk Ł., Moskal A., 2015. Modelling of deposition of flexible fractal-like aggregates on cylindrical fibre in continuum regime. J. Aerosol Sci., 81, 75–89. DOI: 10.1016/j.jaerosci.2014.12.002.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d90bd60-61ea-40f6-b46b-db4941d8d57c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.