Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The opportunity to assess haemolysis in a designed artificial heart seems to be one of the most important stages in construction. We propose a new method for assessing haemolysis level in a rotary blood pump. This method is based on CFD calculations using large eddy simulations (LES). This paper presents an approach to haemolysis estimation and shows examples of numerical simulation. Our method does not determine the value of haemolysis but allows for comparison of haemolysis levels between different artificial heart constructions.
Czasopismo
Rocznik
Tom
Strony
231--239
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
Bibliografia
- 1. Aldama A.A., 1990. Filtering techniques for turbulent flow simulation. Lecture Notes in Engineering. Vol. 56, Springer-Verlag, Berlin.
- 2. Apel J., Paul R., Klaus S., Siess T., Reul H., 2001. Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics. Artif. Organs, 25, 341-347. DOI: 10.1046/j.1525-1594.2001.025005341.x.
- 3. Arvand A., Hormes M., Reul H., 2005. A validated computational fluid dynamics model to estimate hemolysis in a rotary blood pump. Artif. Organs, 29, 531-540. DOI: 10.1111/j.1525-1594.2005.29089.x.
- 4. Bałdyga J., Bourne J.R., 1995. Interpretation of turbulent mixing using fractals and multifractals. Chem Eng Sci., 50, 381-400. DOI:10.1016/0009-2509(94)00217-F.
- 5. Bludszuweit C., 1995. Model for a general mechanical blood damage prediction. Artif. Organs, 19, 583-589. DOI: 10.1111/j.1525-1594.1995.tb02385.x.
- 6. Bluestein D., 2017. Utilizing Computational Fluid Dynamics in cardiovascular engineering and medicine—What you need to know. Its translation to the clinic/bedside. Artif. organs, 41, 117-121. DOI: 10.1111/aor.12914.
- 7. Bluestein M., Mockros, L.F., 1969. Hemolytic effects of energy dissipation in flowing blood. Med. Biol. Eng. Comput., 7, 1-16. DOI: 10.1007/BF02474665.
- 8. Garatti A., Bruschi G., Colombo T., Russo C., Lanfranconi M., Milazzo F., Vitali E., 2008. Clinical outcome and bridge to transplant rate of left ventricular assist device recipient patients: comparison between continuous-flow and pulsatile-flow devices. Eur. J. Cardiothorac. Surg., 34, 275-280. DOI: 10.1016/j.ejcts.2008.02.019.
- 9. Germano M., Piomelli U., Moin P., Cabot W.H., 1991. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A: Fluid Dyn., 3, 1760-1765. DOI: 10.1063/1.857955.
- 10. Gregoriades N., Clay J., Ma N., Koelling K., Chalmers J.J., 2000. Cell damage of microcarrier cultures as a function of local energy dissipation created by a rapid extensional flow. Biotech. Bioeng., 69, 171-182. DOI: 10.1002/(SICI)1097-0290(20000720)69:2.
- 11. Jones S.A., 1995. A relationship between Reynolds stresses and viscous dissipation: Implications to red cell damage. Ann Biomed Eng, 23, 21-28. DOI: 10.1007/BF02368297.
- 12. Kim S.H., Chandran K.B., Chen C.J., 1992. Numerical simulation of steady flow in a two-dimensional total artificial heart model. J. Biomech. Eng., 114, 497-503. DOI: 10.1115/1.2894101.
- 13. Leonard A., 1975. Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys., 18, 237-248. DOI: 10.1016/S0065-2687(08)60464-1.
- 14. Leprince P., Bonnet N., Rama A., Leger P., Bors V., Levasseur J.P., Gandjbakhch I., 2003. Bridge to transplantation with the Jarvik-7 (CardioWest) total artificial heart: A single-center 15-year experience. J. Heart Lung Transplant., 22, 1296-1303. DOI: 10.1016/S1053-2498(03)00036-6.
- 15. Leverett L.B., Hellums J.D., Alfrey C.P., Lynch E.C., 1972. Red blood cell damage by shear stress. Biophys J., 12, 257. DOI: 10.1016/S0006-3495(72)86085-5.
- 16. Lilly D.K., 1967. The representation of small-scale turbulence in numerical simulation experiments, In: Goldstine H.H. (Ed.), Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences. IBM Forum No. 320 – 1951, 195 - 210.
- 17. Lilly D.K., 1992. A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A: Fluid Dyn., 4, 633-635. DOI: 10.1063/1.858280.
- 18. Medvitz R.B., Boger D.A., Izraelev V., Rosenberg G., Paterson E.G., 2011. Computational fluid dynamics design and analysis of a passively suspended Tesla pump left ventricular assist device. Artif. Organs, 35, 522-533. DOI: 10.1111/j.1525-1594.2010.01087.x.
- 19. Mitamura Y., Takahashi S., Amari S., Okamoto E., Murabayashi S., Nishimura I., 2011. A magnetic fluid seal for rotary blood pumps: effects of seal structure on long-term performance in liquid. J Artif. Organs, 14(1), 23-30. DOI: 10.1007/s10047-010-0526-8.
- 20. Moin P., Kim J., 1982. Numerical investigation of turbulent channel flow. J. Fluid Mech., 118, 341-377. DOI: 10.1017/S0022112082001116.
- 21. Molla M.M., Paul M.C., 2009. LES of non-newtonian physiological blood flow. 1st International Conference on
- 22. Mathematical and Computational Biomedical Engineering - CMBE2009. June 29 - July 1, 2009, Swansea, UK.
- 23. Nevaril C.G., Lynch E.G., Alfrey C.P., Hellums J.D., 1968. Erythrocyte damage and destruction induced by shearing stress. J. Lab. Clin. Med., 71(5), 784-790.
- 24. Okamoto E., Hashimoto T., Inoue T., Mitamura Y., 2003. Blood compatible design of a pulsatile blood pump using computational fluid dynamics and computer-aided design and manufacturing technology. Artif.
- 25. Organs, 27, 61-67. DOI: 10.1046/j.1525-1594.2003.07183.x.
- 26. Pohorecki R., Bałdyga J., Ryszczuk A., Motyl T., 2001. Erythrocyte destruction during turbulent mixing. Biochem. Eng. J., 9, 147-154. DOI: 10.1016/S1369-703X(01)00135-8.
- 27. Rooney J.A., 1970. Hemolysis near an ultrasonically pulsating gas bubble. Science, 169(3948), 869-871. DOI: 10.1126/science.169.3948.869.
- 28. Saito S., Nishinaka T., 2005. Chronic nonpulsatile blood flow is compatible with normal end-organ function: Implications for LVAD development. J Artif. Organs, 8, 143-148. DOI: 10.1007/s10047-005-0295-y.
- 29. Smagorinsky J., 1963. General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev., 91, 99-164. DOI: 10.1175/1520-0493(1963)091.
- 30. Song X., Throckmorton A.L., Wood H.G., Antaki J.F., Olsen D.B., 2003. Computational fluid dynamics prediction of blood damage in a centrifugal pump. Artif. Organs, 27, 938-941. DOI: 10.1046/j.1525-1594.2003.00026.x.
- 31. Sutera S.P., Mehrjardi M.H., 1975. Deformation and fragmentation of human red blood cells in turbulent shear flow. Biophys. J., 15, 1-10. DOI: 10.1016/S0006-3495(75)85787-0.
- 32. Szwast M., 2009. Selected experimental and computational aspects of artificial heart acting as a centrifugal pump. PhD Thesis.
- 33. Szwast M., Suchecka T., Piątkiewicz W., 2012. Mathematical model for biological cell deformation in a cylindrical pore. Chem. Process Eng., 33, 385-396. DOI: 10.2478/v10176-012-0034-x.
- 34. Tavoularis S., Sahrapour A., Ahmed N.U., Madrane A., Vaillancourt R., 2003. Towards optimal control of blood flow in artificial hearts. Cardiovascular Eng., 8, 20-31. DOI: 10.1046/j.1525-1594.2003.00026.x.
- 35. Wang Y., Song X., Ying C., 2008. Applications of traditional pump design theory to artificial heart and CFD simulation. Front. Energy Power Eng. China, 2, 504-507. DOI: 10.1007/s11708-008-0059-5.
- 36. Williams A.R., Hughes D.E., Nyborg W.L., 1970. Hemolysis near a transversely oscillating wire. Science, 169(3948), 871-873. DOI: 10.1126/science.169.3948.871.
- 37. Yoganathan A.P., Chandran K.B., Sotiropoulos F., 2005. Flow in prosthetic heart valves: state-of-the-art and future directions. Ann. Biomed. Eng., 33, 1689-1694. DOI: 10.1007/s10439-005-8759-z.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d8fd3ba-2650-40cc-9226-5b4284e0c6ed