PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Human factor in Industry 4.0: about skills of operators in steelworks 4.0

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The article presents the issues of metallurgist skills in the conditions of implementing the key technologies of Industry 4.0. The purpose of the paper was to propose a skills framework for a metallurgist in the context of Industry 4.0. Design/methodology/approach: The paper consists of an introduction and two substantive parts. The first part deals with the role of the human factor in Industry 4.0. The second part is about the skills of a metallurgist (the general framework of skills 4.0) in the transformation of metallurgical enterprises to Industry 4.0. The paper is part of the current research on skills of operators in Industry 4.0. The study uses a qualitative descriptive method referring to a critical analysis of literature about skills of the future. The article briefly reviews selected theoretical approaches to the operator-technology skills in the reality of Industry 4.0. Findings: The main result of the analysis was to bring closer the current, yet poorly scientifically recognised research about the place of human factor in the Industry 4.0 together with the structure of skills for the restructured employment in the steel industry. Research limitations/implications: In the conditions of the fourth industrial revolution and strong popularisation of the concept of Industry 4.0, enterprises must be able to reorganize human resources (HR). A new package of knowledge, new skills of employees are needed to perform tasks efficiently and to cooperate with new technological solutions of production and control and monitoring systems of manufacturing and service processes. The topic about human factor (HF) in Industry 4.0 is very actual and it will be developed according to wider and wider implementation of new (smarter) technologies in enterprises. Practical implications: Presented framework of human skills can be used to improve the skills profile of a metallurgist 4.0 (a worker in smarter steel mill). Social implications: In developing of new skills of employees in smart steelworks, besides steel mills, is needed an educational ecosystem, that joins different educational and science organizations. Originality/value: Reorganization of employment in Industry 4.0 is a new research field but very actual in the realized transformation process of enterprises. The paper is a form of introduction to discussion about new skills of operators in smart production.
Rocznik
Tom
Strony
119--132
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
  • Silesian University of Technology, Gliwice, Poland
  • Colorado Mesa University, Grand Junction, CO, USA
Bibliografia
  • 1. Daugherty, P.R., and Wilson, H.J. (2018). Human + Machine: Reimagining Work in the Age of AI. Boston Massachusetts: Harvard Business Review Press.
  • 2. European Commission (2020). Blueprint European vision on steel-related skills (…), May.
  • 3. Flores, E., Xu, X., Lu, Y. (2020). Human Cyber-Physical Systems: A skill-based correlation between humans and machines. 16th IEEE International Conference on Automation Science and Engineering (CASE) August 20-21, 2020, Online Zoom Meeting, pp. 1313-1318.
  • 4. Gajdzik, B. (2020a). Changes in HR in the Polish steel industry over the last thirty years. Zarządzanie Zasobami Ludzkimi, 3-4, 25-42.
  • 5. Gajdzik, B. (2020b). Development of business models and their key components in the context of cyber-physical production systems in Industry 4.0. In: A. Jabłoński, M. Jabłoński (eds.), Scalability and sustainability of business models in circular, sharing and networked economies (pp. 73-94). Newcastle: Cambridge Scholars Publishing, ISBN 978-1-5275-25-4609-7.
  • 6. Gajdzik, B. (2021a). Transformation from Steelworks 3.0 to Steelworks 4.0: key technologies of industry 4.0 and their usefulness for Polish steelworks in direct research. European Research Studies Journal, 24(3), 61-71; doi:10.35808/ersj/2452.
  • 7. Gajdzik, B. (2021b). Operator maszyn i urządzeń w Przemyśle 4.0 – wprowadzenie do tematu. Gospodarka Materiałowa & Logistyka, 73(5), 2-7; doi:10.33226/1231-2037.2021.5.1.
  • 8. Gajdzik, B. (2022). How Steel Mills Transform into Smart Mills: Digital Changes and Development Determinants in the Polish Steel Industry. European Research Studies Journal Volume, 25(1), 27-42.
  • 9. Gajdzik, B., and Wolniak, R. (2021). Transitioning of steel producers to the steelworks 4.0 – literature review with case studies. Energies, 14(14), 1-22, doi:10.3390/en14144109.
  • 10. Gajdzik, B., Grabowska, S., Saniuk, S. (2021). A theoretical framework for Industry 4.0 and its implementation with selected practical schedules. Energies, 14(4), 1-24, doi:10.3390/en14040940.
  • 11. Gajdzik, B., Szymszal, J. (2015). Generation gap management in restructured metallurgical enterprises in Poland. International Journal of Management and Economics, 47, July–September, 107-120, http://www.sgh.waw.pl/ijme/.
  • 12. Gőtz, M., and Gracel, J. (2017). Przemysł czwartej generacji (Industry 4.0) – wyzwania dla badań w kontekście międzynarodowym. KNUV, 1(51), pp. 217-235.
  • 13. Hamel, G. (2009). Moon Shots for Management. Harvard Business Review, February, pp. 91-98.
  • 14. INDUSTRIE 4.0: Recommendations for implementing the strategic initiative INDUSTRIE 4.0. Final Report of the Industry 4.0 working group.
  • 15. Kopp, R. (2014). Przemysł 4.0 i jego wpływ na przemysł kuźniczy [Industry 4.0 and its influence on metal forging Industry]. Obróbka Plastyczna Metali, 25(1), 75-85.
  • 16. Kumar, A., and Kumar, S. (2020). Industry 4.0: Evolution, Opportunities and Challenges. International Journal of Research in Business Studies, 5(1), June, 139-148.
  • 17. Lee, J., Bagheri, B., and Kao, H.A. (2015). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett., 3, 18-23.
  • 18. Liu, C., Cao, S., Tse, W., and Xu, X. (2017). Augmented Reality-assisted Intelligent Window for Cyber-Physical Machine Tools. J. Manuf. Syst., 44, 280-286.
  • 19. Lorenz, M., Rüßmann, M., Strack, R., Lueth, K.L., Bolle, M. (2015). Man and Machine in Industry 4.0: How Will Technology Transform the Industrial Workforce through 2025, Vol. 2. Boston, MA, USA: Boston Consulting Group.
  • 20. Monostori, L. et al. (2016). Cyber-physical systems in manufacturing. CIRP Ann., 65(2), 621-641.
  • 21. Neumann, W.P., Winkelhaus, S., Grosse, E.H., Glock, C.H. (2021). Industry 4.0 and the human factor – A systems framework and analysis methodology for successful development. International Journal Production Economics 233, 107992, https://doi.org/10.1016/j.ijpe.2020.107992.
  • 22. OECD (2018). The Future of Education and Skills. Education 2030. Retrieved from https://www.oecd.org/education/2030/E2030%20Position%20Paper%20 (05.04.2018).pdf, Feb. 2019.
  • 23. Owerczuk, M. (2016). Technologia zmieni przemysł. http://www.rp.pl/Biznes/306239-841-Michal-Owerczuk-Boston-Consulting-Group-Technologia-zmieni-przemysl.html, 15.06.2016.
  • 24. Oztemel, E., and Gursev, S. (2020). Literature review of Industry 4.0 and related technologies. J. Intell. Manuf., 31(1), 127-182.
  • 25. Raport: MANUAL 4.0. Metodologia organizacji szkoleń i doradztwa w dobie przemysłu 4.0. Opracowanie zbiorowe firmy Inspire-Consultung, www.inspire-consulting.pl.
  • 26. Romero, D., Bernus, P., Noran, O., Stahre, J., Fast-Berglund, Å. (2016a). The operator 4.0: Human cyber-physical systems & adaptive automation towards human-automation symbiosis work systems. IFIP International Conference on Advances in Production Management Systems. London, UK: Springer, pp. 677-686.
  • 27. Romero, D., Stahre, J., Wuest, T., Noran, O., Bernus, P., Fast-Berglund, Å., Gorecky D.(2016b). Towards an Operator 4.0 Typology: A Human-Centric Perspective on the Fourth Industrial Revolution Technologies. Proceedings of the International Conference on Computers and Industrial Engineering (CIE46) Proceedings. Tianjin, China, 29-31 October.
  • 28. Ruppert, T., Jaskó, S., Holczinger, T., Abonyi, J. (2018). Enabling technologies for operator 4.0: A survey. Appl. Science, 8, 1650.
  • 29. Senge, P.M. (2006). The Fifth Discipline. The Art. & Pratice of the Learing Organization. BANTAM DELL.
  • 30. Sun, S., Zheng, X., Gong, B., García Paredes, J., and Ordieres-Meré, J. (2021). Healthy Operator 4.0: A Human Cyber-Physical System Architecture for Smart Workplaces. Sensors MDPI, 20, 1-21, doi:10.3390/s20072011.
  • 31. Wiesner, S., Marilungo, E., and Thoben, K.-D. (2017). Cyber-Physical Product-Service Systems – Challenges for Requirements Engineering. Int. J. Autom. Technol., 11(1), 17-28.
  • 32. World Economic Forum (2018). The Future of Jobs Report 2018. Insight report (World Economic Forum). Geneva. Retrieved from http://www3.weforum.org/docs/WEF_Future_of_Jobs_2018.pdf, Feb. 2019.
  • 33. Yate, M. (2018). The 7 Transferable Skills To Help You Change Careers. Forbes 09.02.2018. Retrieved from https://www.forbes.com/sites/nextavenue/2018/02/09/the-7-transferable-skills-to-help-you-change-careers/#386f8a634c04, Feb. 2019
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d8efe20-6c8f-4211-bb89-17ffe5337c6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.