PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A characterization of the bivariate wishart distribution

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We provide a characterization of the bivariate Wishart and normal-Wishart distributions. Assume that x = {x<sub>1</sub>,x<sub.2</sub>} has a non-singular bivariate normal pdf f(x) = N (μ, W) with unknown mean vector fi and unknown precision matrix W. Let f(x)= f(x<sub>1</sub>)f(x<sub>2</sub>|x<sub.1</sub>), where f(x<sub>1</sub>) = N{m<sub>1</sub> 1/ν<sub>1</sub> and f(x<sub>2</sub> | x<sub>1</sub>) = N{m<sub>2|1</sub> + b<sub>12</sub>x<sub>1</sub> l/ν<sub>2|1</sub>). Similarly, define {ν<sub>2</sub>, b<sub>21</sub>,m<sub>2</sub>, m<sub>1|2</sub>} using the factorization f(x)=f(x<sub>2</sub>)f(x<sub>1</sub>|x<sub>2</sub>)- Assume μ and W have a strictly positive joint pdf f<sub>μw</sub>(μW). Then f<sub>μw</sub> is a normal-Wishart pdf if and only if global independence holds, namely,…[formula] and local independence holds, namely, [formula] (where x* denotes the standardized r.v. x and stands for independence). We also characterize the bivariate pdfs that satisfy global independence alone. Such pdfs are termed hyper-Markov laws and they are used for a decomposable prior-to-posterior analysis of Bayesian networks.
Rocznik
Strony
119--131
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
  • Computer Science Department, Technion, Haifa 32000, Israel
autor
  • Microsoft Research, Bldg 9S, Redmond WA, 98052-6399, U.S.A.
Bibliografia
  • [1] J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press, New York 1966.
  • [2] P. Dawid and S. Lauritzen, Hyper Markov laws in statistical analysis of decomposable graphical models, Ann. Statist. 21 (1993), pp. 1272-1317.
  • [3] M. DeGroot, Optimal Statistical Decisions, McGraw-Hill, New York 1970.
  • [4] D. Geiger and D. Heckerman, A characterization of the Dirichlet distribution through global and local parameter independence, Ann. Statist. 25, No 3 (1997), pp. 1344-1369.
  • [5] — Learning Gaussian networks, in: Proceedings of Tenth Conference on Uncertainty in Artificial Intelligence, Seattle, WA, Morgan Kaufmann, July 1994, pp. 235-243.
  • [6] D. Heckerman and D. Geiger, Learning Bayesian networks: A unification for discrete and Gaussian domains, in: Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence, Montreal, Canada, Morgan Kaufmann, August 1995.
  • [7] — and D. Chickering, Learning Bayesian networks: The combination of knowledge and statistical data, in: Proceedings of Tenth Conference on Uncertainty in Artificial Intelligence, Seattle, WA, Morgan Kaufmann, July 1994, pp. 293-301.
  • [8] A. Járai, On regular solutions of functional equations, Aequationes Math. 30 (1986), pp. 21-54.
  • [9] A. M. Kagan, C. R. Rao and Y. V. Linnik, Characterization Problems in Mathematical Statistics, Wiley, 1973.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d8cbf8e-8f8e-4d36-acc6-d6177e1bc2ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.