PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the annealing temperature of the shape memory alloy actuator on its thermal characteristics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Shape memory alloys (SMA) are used in different areas of engineering and science thanks to their unique properties. They also continue to be an innovative material for the sustainable construction industry. In this study, a commercial helical-type SMA spring actuator was investigated by subjecting it to annealing at various parameters. The thermal shape memory properties were evaluated by means of the DSC method. In most cases, the higher the annealing temperatures for the material were in the range up to 595°C, the lower the transformation temperatures. As the DSC runs showed, a different character of the changes especially in characteristic temperatures, was observed for annealing temperatures above 600°C. The results showed that the different annealing temperatures, and even the method of cooling, provide a wide range of possibilities to control the SMA spring reaction – transformation behaviour and temperatures. Such treatment can be a simple technical procedurę used for the preparation of the selected SMA functional properties if required. This means that the same SMA element can be reused without having to source a new one. This may be desirable from the point of view of sustainability.
Rocznik
Tom
Strony
50--60
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • University of Warmia and Mazury in Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Poland
Bibliografia
  • 1. Abd-Elghany, M. & Klapötke, T.M. (2018) A review on differential scanning calorimetry technique and its importance in the field of energetic materials. Physical Sciences Reviews, 20170103, 1-14.
  • 2. Alam, M.S., Youssef, M.A. & Nehdi, M. (2005) Shape memory alloys as a new construction material. In: Proceedings of Cansmart 2005 – the 8th International Workshop on Smart Materials and Structures, 123-132.
  • 3. Ashrafiuon, H. & Elahinia, M.H. (2016) Control of SMA Actuators. In: Elahinia, M.H. (Ed.) Shape Memory Alloy Actuators: Design, Fabrication, and Experimental Evaluation. Hoboken, NJ, John Wiley&Sons, 125-154.
  • 4. Ashrafiuon, H. & Elahinia, M.H. (2016) Control of SMA Actuators. In: Elahinia, M.H. (Ed.) Shape Memory Alloy Actuators: Design, Fabrication, and Experimental Evaluation. Hoboken, NJ, John Wiley&Sons, 125-154.
  • 5. Chang, W-S. & Araki, Y. (2016) Use of shape memory alloy in construction: a critical review. In: Proceedings of the ICE-Civil Engineering, 169(2), 87-95.
  • 6. Degeratu, S., Bizdoaca, N.G., Manolea, G., Diaconu, I., Petrisor, A. & Degeratu, V. (2008) On the design of a shape memory alloy spring actuator using thermal analysis. WSEAS Transactions on Systems, 10(7), 1006-1015.
  • 7. Fang, C., Qiu, C. & Zheng, Y. (2023) Shape memory alloys for civil engineering. Materials, 16(2),787.
  • 8. Follador, M., Cianchetti, M., Arienti, A. & Laschi, C. (2012) A general method for the design and fabrication of shape memory alloy active spring actuators. Smart Materials and Structures, 21, 115029, 1-10.
  • 9. Hattori, S., Hara, M., Nabae, H., Hwang, D. & Higuchi, T. (2014) Design of an impact drive actuator using a shape memory alloy wire. Sensors and Actuators, A219, 47-57.
  • 10. Hu, K., Rabenorosoa, K. & Ouisse, M. (2021) A review of SMA-based actuators for bidirectional rotational motion: Application to origami robots. Frontiers in Robotics and Al, 8, 678486, 1-21.
  • 11. Huang, W. (2002) On the selection of shape memory alloys for actuators. Materials and Design, 23, 11-19.
  • 12. Kuś, K., Frączyk, A. & Wojtkowiak, A. (2019) Metallic alloy with shape memory-selected properties and engineering aspects. Technical Sciences, 4(22), 337-350.
  • 13. Mansourizadeh, K., Golahmadi, A., Paoletti, I.M. & Anishchenko, M. (2021) Design of a passive mechanical system actuated by the nitinol helical springs for shading and sustainable development purposes of the buildings. Building and Environment, 187, 107385, 1-15.
  • 14. Mavroidis, C. (2002) Development of advanced actuators using shape memory alloys and electrorheological fluids. Research in Nondestructive Evaluation, 14, 1-32.
  • 15. Memry Corporation (2017) Introduction to Nitinol. Bethel-Menlo Park-New Hartford, USA, 1-41. https://www.memry.com/intro-to-nitinol.
  • 16. Mohd Jani, J., Leary, M., Subic, A. & Gibson, M.A. (2014) A review of shape memory alloy research, applications and opportunities. Materials and Design, 56, 1078-1113.
  • 17. Nespoli, A., Villa, E., Bergo, L., Rizzacasa, A. & Passaretti, F. (2015) DSC and three-point bending test for the study of the thermo-mechanical history of NiTi and NiTi-based orthodontic archwires. Journal of Thermal Analysis and Calorimetry, 120, 1129-1138.
  • 18. Oshida, Y. & Tominaga, T. (2020) Nickel-Titanium Materials. Biomedical Applications. Berlin, Boston, De Gruyter.
  • 19. Rao, A., Srinivasa, A.R. & Reddy, J.N. (2015) Design of shape memory alloy (SMA) actuators. Springer International Publishing.
  • 20. Reynaerts, D. & Van Brussel, H. (1998) Design aspects of shape memory actuators, Mechatronics, 8, 635-656.
  • 21. Sadashiva, M., Nouman, K., Ramesh, K. & Deve Gowda, T.M. (2021) A review on application of shape memory alloys. International Journal of Recent Technology and Engineering, 9(6), 110-120.
  • 22. Sharma, N., Jangra, K.K. & Raj, T. (2018) Fabrication of NiTi alloy: A review. In: Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 232(3), 250-269.
  • 23. Stoeckel, D. (1995) The Shape Memory Effect - Phenomenon, Alloys and Applications. In: Proceedings: Shape Memory Alloys for Power Systems EPRI, 1-13.
  • 24. Turabi, A.S., Saedi, S., Saghaian, S.M., Karaca, H.E. & Elahinia, M.H. (2016) Experimental Characterization of Shape Memory Alloys. In: Elahinia, M.H. (Ed.) Shape Memory Alloy Actuators: Design, Fabrication, and Experimental Evaluation. Hoboken, NJ, USA, John Wiley&Sons, 239-277.
  • 25. Weirich, A. & Kuhlenkötter, B. (2019) Applicability of shape memory alloys in aircraft interiors. Actuators, 8(61), 1-13.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d8b5d58-65eb-4435-8258-08e04ce93952
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.