Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Accurately identifying false starts in speedway racing is a very challenging task due to the subtle nature of pre-start movements. Manual detection methods, often dependent on the judgment of race officials, are prone to errors and subjectivity, leading to inconsistencies in decision-making. This paper introduces an automated approach that leverages computer vision methods to enhance detection precision. Here, we have expanded its use to detect false starts in speedway racing. The proposed approach introduces image processing techniques with 3D Convolutional Neural Networks (CNNs) and Long-Short-Term Memory (LSTM) networks to analyze rider movements during the starting procedure. Unlike manual detection, which often misses fine movements at the start line, our method uses 3D CNNs to monitor racer movements and applies LSTM networks to assess time-based motion patterns that signal false starts. The presented results show that the 3D CNN achieved an accuracy of 86.36% with a higher precision when compared to traditional methods. This automated process not only enhances fairness in competitive racing, but also illustrates the broader capability of emerging technologies to refine decision-making in sports.
Rocznik
Tom
Strony
9
Opis fizyczny
Bibliogr. 36 poz., fot., rys., tab.
Twórcy
autor
- Foundation for the Support of Innovation, Research and Development Wrocław, Poland
autor
- Department of Computer Engineering, Wrocław University of Science and Technology, Wrocław, Poland
Bibliografia
- [1] J. B. Lee, R. Mellifont, B. Burkett, and D. James, “Detection of illegal race walking: A tool to assist coaching and judging,” Sensors (Basel, Switzerland), vol. 13, pp. 16 065-16 074, 2013. [Online]. Available: https://doi.org/10.3390/s131216065
- [2] J. Wu, K. Zhang, Y. Zhang, X. Xie, and G. Shi, “High-speed objecttracking with dynamic vision sensor,” Proceedings of the 5th China High Resolution Earth Observation Conference (CHREOC 2018), 2018. [Online]. Available: https://doi.org/10.1007/978-981-13-6553-9_18
- [3] K. L. Strobel, S. Zhu, R. Chang, and S. Koppula, “Accurate, low-latency visual perception for autonomous racing: Challenges, mechanisms, and practical solutions,” 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1969-1975, 2020. [Online]. Available: https://doi.org/10.1109/IROS45743.2020.9341683
- [4] M. Brodie, A. Walmsley, and W. Page, “Fusion motion capture: A prototype system using inertial measurement units and gps for the biomechanical analysis of ski racing,” Sports Technology, vol. 1, pp. 17 - 28, 2008. [Online]. Available: https://doi.org/10.1080/19346182.2008.9648447
- [5] V. Wiley and T. Lucas, “Computer vision and image processing: A paper review,” International Journal of Artificial Intelligence Research, 2018. [Online]. Available: https://doi.org/10.29099/ijair.v2i1.42
- [6] J. Krakowian and Ł. Jeleń, “Preliminary study on the detection of subtle variations in image sequences for identifying false starts in speedway racing,” in System Dependability - Theory and Applications, W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak, and J. Kacprzyk, Eds. Cham: Springer Nature Switzerland, 2024, pp. 111-120. [Online]. Available: https://doi.org/10.1007/978-3-031-61857-4_11
- [7] L. Needham, M. Evans, D. P. Cosker, and S. L. Colyer, “Using computer vision and deep learning methods to capture skeleton push start performance characteristics,” ISBS Proceedings Archive, vol. 38, no. 1, 2020. [Online]. Available: https://commons.nmu.edu/isbs/vol38/iss1/191
- [8] G. L. Goh, G. D. Goh, J. W. Pan, P. S. P. Teng, and P. W. Kong, “Automated Service Height Fault Detection Using Computer Vision and Machine Learning for Badminton Matches,” Sensors, vol. 23, no. 24, p. 9759, dec 11 2023. [Online]. Available: https://doi.org/10.3390/s23249759
- [9] S. Akkas, S. S. Maini, and J. Qiu, “A Fast Video Image Detection using TensorFlow Mobile Networks for Racing Cars,” in 2019 IEEE International Conference on Big Data (Big Data), vol. abs 1804 2767. IEEE, 12 2019, pp. 5667-5672. [Online]. Available: https://doi.org/10.1109/BigData47090.2019.9005689
- [10] W. Khan, K. Crockett, J. O’Shea, A. Hussain, and B. M. Khan, “Deception in the eyes of deceiver: A computer vision and machine learning based automated deception detection,” Expert Systems with Applications, vol. 169, p. 114341, 5 2021. [Online]. Available: https://doi.org/10.1016/j.eswa.2020.114341
- [11] M. S. Sharif, A. Zorto, V. K. Brown, and W. Elmedany, “Scalable machine learning model for highway cctv feed real-time car accident and damage detection,” in Proceedings of the International Conference on Innovative Computing and Technologies (3ICT), 2023. [Online]. Available: https://doi.org/10.1109/3ict60104.2023.10391543
- [12] U. Jartarghar, D. Sanghvi, M. Nidgundi, K. Kumar, and S. Varur, “Vision transformer-based multi-phase accident detection and false positive mitigation,” Preprint, 2024. [Online]. Available: https://doi.org/10.21203/rs.3.rs-3903862/v1
- [13] C. Wang, “A review on 3d convolutional neural network,” in 2023 IEEE 3rd International Conference on Power, Electronics and Computer Applications (ICPECA), 2023, pp. 1204-1208. [Online]. Available: https://doi.org/10.1109/ICPECA56706.2023.10075760
- [14] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for human action recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 221-231, 2013. [Online]. Available: https://doi.org/10.1109/TPAMI.2012.59
- [15] R. Al-Akam, D. Paulus, and D. Gharabaghi, “Human Action Recognition based on 3d Convolution Neural Networks from RGBD Videos,” in CSRN. Západočeská univerzita, 2018. [Online]. Available: https://doi.org/10.24132/CSRN.2018.2803.3
- [16] S. Gurkirt and C. Fabio, “Recurrent Convolutions for Causal 3d CNNs,” 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), 2018. [Online]. Available: https://doi.org/10.48550/arXiv.1811.07157
- [17] S. Tiwari, G. Jain, D. K. Shetty, M. Sudhi, J. M. Balakrishnan, and S. R. Bhatta, “A Comprehensive Review on the Application of 3d Convolutional Neural Networks in Medical Imaging,” in RAiSE-2023, vol. 25. MDPI, dec 11 2023, p. 3. [Online]. Available: https://doi.org/10.3390/engproc2023059003
- [18] T. L. and H. S. Amin, “3d Convolutional Neural Networks for Ultrasound-Based Silent Speech Interfaces,” International Conference on Artificial Intelligence and Soft Computing, 2021. [Online]. Available: https://doi.org/10.1007/978-3-030-61401-0_16
- [19] K. S., L. Jeongyeon, N. Taeyoung, and K. Munchurl, “3dsrnet: Video Super-resolution using 3d Convolutional Neural Networks,” arXiv.org, 2018. [Online]. Available: https://doi.org/10.48550/arXiv.1812.09079
- [20] J. Chen, S. Bi, G. Zhang, and G. Cao, “High-Density Surface EMG-Based Gesture Recognition Using a 3d Convolutional Neural Network,” Sensors, vol. 20, no. 4, p. 1201, feb 21 2020. [Online]. Available: https://doi.org/10.3390/s20041201
- [21] S. Sun, L. Mu, L. Wang, and P. Liu, “L-unet: An lstm network for remote sensing image change detection,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5, 2020. [Online]. Available: https://doi.org/10.1109/LGRS.2020.3041530
- [22] B. Wonmin, B. T., R. Federico, and L. M., “Scene labeling with LSTM recurrent neural networks,” Computer Vision and Pattern Recognition, 2015. [Online]. Available: https://doi.org/10.1109/CVPR.2015.7298977
- [23] U. Amin, A. Jamil, M. Khan, S. M., and B. S., “Action Recognition in Video Sequences using Deep Bi-Directional LSTM With CNN Features,” IEEE Access, 2018. [Online]. Available: https://doi.org/10.1109/ACCESS.2017.2778011
- [24] R. V. Rahul, S. Bing, L. Jiwen, X. Dong, and W. G., “A Siamese Long Short-Term Memory Architecture for Human Re-identification,” European Conference on Computer Vision, 2016. [Online]. Available: https://doi.org/10.1007/978-3-319-46478-7_9
- [25] S. Nitish, M. Elman, and S. R., “Unsupervised Learning of Video Representations using LSTMs,” International Conference on Machine Learning, 2015. [Online]. Available: https://doi.org/10.48550/arXiv.1502.04681
- [26] G. Kuldeep, “Image Classification using Sequence of Pixels,” arXiv.org, 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2209.11495
- [27] J. Li, S. Zhang, and T. Huang, “Multi-scale 3d convolution network for video based person re-identification,” 2018. [Online]. Available: https://arxiv.org/abs/1811.07468
- [28] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning spatiotemporal features with 3d convolutional networks,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV), December 2015. [Online]. Available: https://doi.org/10.48550/arXiv.1412.0767
- [29] K. Liu, W. Liu, C. Gan, M. Tan, and H. Ma, “T-c3d: Temporal convolutional 3d network for real-time action recognition,” in AAAI Conference on Artificial Intelligence, 2018. [Online]. Available: https://doi.org/10.1609/aaai.v32i1.12333
- [30] J. Mänttäri, S. Broomé, J. Folkesson, and H. Kjellström, “Interpreting video features: a comparison of 3d convolutional networks and convolutional lstm networks,” 2020. [Online]. Available: https://arxiv.org/abs/2002.00367
- [31] C. Zhan, X. Duan, S. Xu, Z. Song, and M. Luo, “An improved moving object detection algorithm based on frame difference and edge detection,” in Fourth International Conference on Image and Graphics (ICIG 2007), 2007, pp. 519-523. [Online]. Available: https://doi.org/10.1109/ICIG.2007.153
- [32] E. S¸ ims¸ek and B. Ozyer, “Selected three frame difference method for moving object detection,” International Journal of Intelligent Systems and Applications in Engineering, 2021. [Online]. Available: https://doi.org/10.18201/ijisae.2021.233
- [33] C. Zhang, B. Cheng, and X. Gao, “A motion detection algorithm integrating foreground matching into gaussian mixture modeling,” 2018 11th International Symposium on Computational Intelligence and Design (ISCID), vol. 01, pp. 366-369, 2018. [Online]. Available: https://doi.org/10.1109/ISCID.2018.00089
- [34] G. Chen, Z. Yu, Q. Wen, and Y. Yu, “Improved gaussian mixture model for moving object detection,” in Artificial Intelligence and Computational Intelligence, 2011. [Online]. Available: https://doi.org/10.1007/978-3-642-23881-9_23
- [35] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber, “Lstm: A search space odyssey,” in IEEE Transactions on Neural Networks and Learning Systems, 2016, pp. 2222-2232. [Online]. Available: https://doi.org/10.1109/TNNLS.2016.2582924
- [36] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning spatiotemporal features with 3d convolutional networks,” in Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 4489-4497. [Online]. Available: https://doi.org/10.1109/ICCV.2015.510
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d825308-6bb1-4942-a535-bc4fdf993d7d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.