PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Buckling of Compressed Thin-Walled Composite Structures with Closed Sections

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The subject of the study was thin-walled composite structures, which were made of carbon-epoxy composite. The structures were characterized by a closed square cross-sectional shape. In the research paper, stability tests of axially compressed thin-walled composite structures were carried out in order to determine the critical state of the structures. Experimental tests were carried out on a universal testing machine, using a system for optical measurement of deformation of structures. Numerical simulations were carried out using the finite element method. The research made it possible to evaluate the work of the structure in the buckling state from a qualitative and quantitative point of view.
Słowa kluczowe
Twórcy
  • Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Mechanics and Applied Computer Science, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Białystok, Poland
Bibliografia
  • 1. Rozylo, P.; Debski. H. Effect of eccentric loading on the stability and load-carrying capacity of thin- walled composite profiles with top-hat section. Compos. Struct. 2020; 245: 112388.
  • 2. Rozylo, P.; Falkowicz, K.; Wysmulski, P.; Debski, H.; Pasnik, J.; Kral, J. Experimental-Numerical Failure Analysis of Thin-Walled Composite Columns Using Advanced Damage Models. Materials 2021; 14: 1506. https://doi.org/10.3390/ma14061506.
  • 3. Fascetti, A.; Feo, L.; Nistic, N.; Penna, R. Web-flange behavior of pultruded GFRP I beams: A lattice model for the interpretation of experimental results. Compos. B Eng. 2016; 100: 257–269.
  • 4. Gliszczynski, A.; Kubiak, T. Progressive failure analysis of thin-walled composite columns sub- jected to uniaxial compression. Compos. Struct. 2017; 169: 52–61.
  • 5. Debski, H., Samborski, S., Rozylo, P., Wysmulski, P. Stability and load-carrying capacity of thinwalled FRP composite Z-profiles under eccentric compression. Materials, 2020, 13(13), 2956.
  • 6. Rozylo, P. Failure phenomenon of compressed thin-walled composite columns with top-hat crosssection for three laminate lay-ups. Composite Structures, 304, (2023), 116381.
  • 7. Kim, N-I., Shin D.K., Park, Y-S. Coupled stability analysis of thin-walled composite beams with closed cross-section. Thin-Walled Structures, 48, (2010), 581–596.
  • 8. Urbaniak M., Swiniarski J., Czapski P., Kubiak T. Experimental investigations of thin-walled GFRP beams subjected to pure bending. Thin-Walled Structures, 107, (2016), 397–404.
  • 9. Drozdziel M., Podolak P., Czapski P., Zgorniak P., Jakubczak P. Failure analysis of GFRP columns subjected to axial compression manufactured under various curing-process conditions. Composite Structures, 262, (2021), 113342.
  • 10. Czapski P., Kubiak T. Numerical and experimental investigations of the post-buckling behaviour of square cross-section composite tubes. Composite Structures, 132, (2015), 1160–1167.
  • 11. Rozylo P., Debski H. The Influence of Composite Lay-Up on the Stability of a Structure with Closed Section. Advances in Science and Technology Research Journal 2022, 16(1), 260–265.
  • 12. Czajka B., Rozylo P. The Influence of Composite Lay-Up and the Shape of the Closed Section on the Stability of the Structure. Advances in Scienceand Technology Research Journal 2022, 16(2), 216–224.
  • 13. Taraghi P., Zirakian T., Karampour H. Parametric study on buckling stability of CFRP-strengthened cylindrical shells subjected to uniform external pressure. Thin–Walled Structures, 161, (2021), 107411.
  • 14. Bazant Z.P., Cedolin L. Stability of structures. elastic, inelastic, fracture and damage theories. UK: Oxford University Press; 2010.
  • 15. Singer J., Arbocz J., Weller T. Buckling experiments. Experimental methods in buckling of thin-walled structure. Basic concepts, columns, beams, and plates, vol. 1. New York: John Wiley & Sons Inc.; 1998 (vol. 2: 2002)
  • 16. Banat, D., Mania, R.J. Failure assessment of thin-walled FML profiles during buckling and postbuckling response. Compos Part B Eng 2017;112:278–89.
  • 17. Rozylo, P., Falkowicz, K. Stability and failure analysis of compressed thin-walled composite structures with central cut-out, using three advanced independent damage models. Compos. Struct., 2021;273:114298.
  • 18. Rozylo, P., Teter, A., Debski, H., Wysmulski, P., Falkowicz, K. Experimental an numerical study of buckling of composite profiles with open cross section under axial compression. Appl Compos Mater 2017;24:1251–64.
  • 19. Li, Z.M., Qiao, P. Buckling and postbuckling behavior of shear deformable anisotropic laminated beams with initial geometric imperfections subjected to axial compression. Eng Struct. 2015;85:277–92.
  • 20. Ragheb Wael F. Local buckling analysis of pultruded FRP structural shapes subjected to eccentric compression. Thin-Walled Struct. 2010;48:709–17.
  • 21. Turvey GJ, Zhang Y. A computational and experimental analysis of the buckling, postbuckling and initial failure of pultruded GRP columns. Compos, Struct. 2006;84:1527–37.
  • 22. Rozylo, P.,Debski, H. Stability and load-carrying capacity of short composite Z-profiles under eccen-tric compression, Thin-Walled Struct., 157, (2020), 107019.
  • 23. Rozylo P., Debski, H. Failure study of compressed thin-walled composite columns with top-hat crosssection. Thin-Walled Structures, 180, (2022),109869.
  • 24. Li, W., Cai, H., Li, C., Wang, K., Fang, L. Progressive failure of laminated composites with a hole under compressive loading based on micro-mechanics, Adv. Compos. Mater. 23 (2014) 477–490.
  • 25. Zhang, H., Yang, D., Ding, H., Wang, H., Xu, Q., Ma, Y., Bi, Y. Effect of Z-pin insertion angles on low-velocity impact mechanical response and damage mechanism of CFRP laminates with different layups. Composites: Part A, 150, (2021), 106593.
  • 26. Qiu, C., Han, Y., Shanmugam, L., Zhao, Y., Dong, S., Du, S., Yang, J. A deep learning-based composite design strategy for efficient selection of material and layup sequences from a given database. Composites Science and Technology, 230, (2022), 109154.
  • 27. Hu, Y., Zhang, Y., Fu, X., Hao, G., Jiang, W. Mechanical properties of Ti/CF/PMR polyimide fiber metal laminates with various layup configurations. Composite Structures, 229, (2019), 111408.
  • 28. Paszkiewicz, M., Kubiak, T. Selected problems concerning determination of the buckling load of channel section beams and columns, Thin-Walled Struct. 93 (2015) 112–121.
  • 29. Kamarudin, M.N.B.; Ali, J.S.M.; Aabid, A.; Ibrahim, Y.E. Buckling Analysis of a Thin-Walled Strucure Using Finite Element and Design of Experiments Methods. Aerospace, 2022, 9, 541.
  • 30. Kubiak, T. Static and Dynamic Buckling of Thin Walled Plate Structures. Springer, 2013.
  • 31. Rozylo, P., Smagowski, W., Pasnik, J. Experimental Research in the Aspect of Determining the Mechanical and Strength Properties of the Composite Material Made of Carbon-Epoxy Composite. Advances in Science and Technology Research Journal, 2023, 17(2), 232–246.
  • 32. Rozylo, P. Determined Material Properties within the framework of the NCN project (OPUS) No. 2021/41/B/ST8/00148. Dataset. DOI: 10.5281/ze- nodo.7606942, DOI: 10.18150/V6VJET.
  • 33. Kubiak, T., Samborski, S., Teter, A. Experimental investigation of failure process in compressed channel-section GFRP laminate columns assisted with the acoustic emission method. Compos. Struct. 133, (2015), 921–929.
  • 34. Gliszczynski, A., Kubiak, T. Progressive failure analysis of thin-walled composite columns subjected to uniaxial compression. Compos. Struct. 169, (2017), 52–61.
  • 35. Rozylo, P. Stability and failure of compressed thin-walled composite columns using experimental tests and advanced numerical damage models. Int. J. Numer. Methods. Eng., 2021;122:5076–99
  • 36. Ramkumar, R., Rajaram, K., Saravanan, P., Venkatesh, R., Saranya, K., Jenaris, D.S. Determination of mechanical properties of CFRP composite reinforced with Abaca and Kenaf fibres. Mater. Today: Proc. 2022; 62: 5311–5316.
  • 37. Holmes, J., Sommacal, S., Das, R., Stachurski, Z., Compstion, P. Digital image and volume correlation for deformation and damage characterisation of fibre-reinforced composites: A review. Composite Structures, 315, (2023), 116994.
  • 38. Nowak, M., Maj, M. Determination of coupled mechanical and thermal fields using 2D digital image correlation and infrared thermography: Numerical
  • 39. Kubiak, T. Static and Dynamic Buckling of Thin-Walled Plate Structures. Springer, 2013.
  • 40. Grzejda, R.Fe-modelling of a contact layer between elements joined in preloaded bolted connections for the operational condition. Advances in Science and Technology Research Journal, 2014, 8(24), 19–23.
  • 41. Grzejda, R. Determination of Bolt Forces and Normal Contact Pressure Between Elements in the System with Many Bolts for its Assembly Conditions. Adv. Sci. Technol. Res. J. 2019; 13(1):116–121.
  • 42. Rozylo, P. Failure analysis of beam composite elements subjected to three-point bending using advanced numerical damage models. Acta Mechanica et Automatica, 2023, 17(1), 133-144.
  • 43. Falkowicz, K., Ferdynus, M., Rozylo, P. Experimental and numerical analysis of stability and failure of compressed composite plates. Composite Structures, 261, 2021, 113657.
  • 44. Rozylo, P. Experimental-numerical test of open section composite columns stability subjected to axial compression. Archives of Materials Science and Engineering, 2017, 84(2), 58–64.
  • 45. Rozylo, P., Debski, H., Kral, J. Buckling and limit states of composite profiles with top-hat channel section subjected to axial compression. AIP Conference Proceedings, 2018, 1922, 080001.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d7cbaae-9364-4300-9929-59fcdb4430d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.