PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling and Verification using Different Notations for CPSs: The One-Water-Tank Case Study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (16 ; 02-05.09.2021 ; online)
Języki publikacji
EN
Abstrakty
EN
The choice of an adequate notation and subsequent system formalization are the crucial points for the design of cyber-physical systems (CPSs). Here, an appropriate notation allows an explicit specification of the deterministic system behavior for specified initial states and inputs. We base our study on an industrial example (water tank) that comprises nominal as well as safety-critical states, and focus on the notation’s support to validate/verify crucial safety properties. Several industrial notations (e.g. Matlab/Simulink©) to design and simulate such a hybrid system have been tried based on our physical model. In addition, we remodel our example using the well-founded mathematical formalism of hybrid automata. It enables us to formally express and verify important safety properties using the theorem prover KeYmaera
Rocznik
Tom
Strony
485--488
Opis fizyczny
Bibliogr. 17 poz., wz., il.
Twórcy
  • Polzunov Altai State Technical University / Institute of Automation and Electrometry, Russia
  • HTW Berlin, School of Engineering I, Berlin, Germany
autor
  • HTW Berlin, School of Engineering I, Berlin, Germany
  • nnopolis University, Innopolis, Republic of Tatarstan, Russia
  • nnopolis University, Innopolis, Republic of Tatarstan, Russia
autor
  • Institute of Automation and Electrometry / NSU, Novosibirsk, Russia
  • Institute of Automation and Electrometry / NSU, Novosibirsk, Russia
  • Institute of Automation and Electrometry / NSU, Novosibirsk, Russia
Bibliografia
  • [1] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis and Fault-Tolerant Control, 2nd ed. Springer-Verlag Berlin Heidelberg, 2006. ISBN 978-3-540-35653-0
  • [2] E. A. Lee, “Fundamental limits of cyber-physical systems modeling,” ACM Transactions on Cyber-Physical Systems, vol. 1, no. 1, 2016. doi: 10.1145/2912149
  • [3] S. Staroletov, N. Shilov, I. Konyukhov, V. Zyubin, T. Liakh, A. Rozov, I. Shilov, T. Baar, and H. Schulte, “Model-driven methods to design of reliable multiagent cyber-physical systems,” in CEUR Workshop Proceedings, vol. 2478, 2019, pp. 74-91.
  • [4] T. A. Henzinger, “The theory of hybrid automata,” in Proceedings, 11th Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey, USA, July 27-30, 1996, 1996. doi: 10.1109/LICS.1996.561342 pp. 278-292.
  • [5] R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, Eds., Hybrid Systems, ser. Lecture Notes in Computer Science, vol. 736. Springer, 1993. doi: 10.1007/3-540-57318-6
  • [6] R. Alur, T. A. Henzinger, and P. H. Ho, “Automatic symbolic verification of embedded systems,” in Proc. of the 14th Annual Real-time Systems Symp., 1993. doi: 10.1109/32.489079 pp. 2-11.
  • [7] B. I. Silva, O. Stursberg, B. H. Krogh, and S. Engell, “An assessment of the current status of algorithmic approaches to the verification of hybrid systems,” in Proc. of the 40th IEEE Conf. on Decision and Control, 2001. doi: 10.1109/CDC.2001.980711 pp. 2867-2874.
  • [8] S. Mitsch and A. Platzer, “Modelplex: verified runtime validation of verified cyber-physical system models,” Formal Methods System Design, vol. 49, no. 1,2, pp. 33-74, 2016. doi: 10.1007/s10703-016-0241-z
  • [9] A. Platzer, Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Heidelberg: Springer, 2010. ISBN 978-3-642-14508-7
  • [10] A. Platzer, Logical Foundations of Cyber-Physical Systems. Springer, 2018. ISBN 978-3-319-63587-3
  • [11] G. K. Fourlas, K. J. Kyriakopoulos, and C. D. Vournas, “Hybrid systems modeling for power systems,” Circuits and Systems Magazine, IEEE, vol. 4, no. 3, pp. 16-23, 2004. doi: 10.1109/MCAS.2004.1337806
  • [12] K. G. Larsen, “Verification and performance analysis for embedded systems,” in Third IEEE International Symposium on Theoretical Aspects of Software Engineering (TASE). Tianjin, China: IEEE Computer Society, July 2009. doi: 10.1109/TASE.2009.66
  • [13] A. Kroll and H. Schulte, “Benchmark problems for nonlinear system identification and control using soft computing methods: Need and overview,” Applied Soft Computing, vol. 25, no. 12, pp. 496-513, December 2014. doi: 10.1016/j.asoc.2014.08.034
  • [14] I. Anureev, N. Garanina, T. Liakh, A. Rozov, H. Schulte, and V. Zyubin, “Towards safe cyber-physical systems: the Reflex language and its transformational semantics,” in 2019 International Siberian Conference on Control and Communications (SIBCON). IEEE, 2019. doi: 10.1109/SIBCON.2019.8729633 pp. 1-6.
  • [15] R. Alur, C. Courcoubetis, T. A. Henzinger, and P. Ho, “Hybrid automata: An algorithmic approach to the specification and verification of hybrid systems,” in Hybrid Systems, 1992. doi: 10.1007/3-540-57318-6 pp. 209-229.
  • [16] J.-D. Quesel, S. Mitsch, S. Loos, N. Aréchiga, and A. Platzer, “How to model and prove hybrid systems with KeYmaera: A tutorial on safety,” STTT, vol. 18, no. 1, pp. 67-91, 2016. doi: 10.1007/s10009-015-0367-0
  • [17] T. Baar and S. Staroletov, “A control flow graph based approach to make the verification of cyber-physical systems using KeYmaera easier,” Modeling and Analysis of Information Systems, vol. 25, no. 5, pp. 465-480, 2018. doi: 10.18255/1818-1015-2018-5-465-480
Uwagi
1. Track 3: Software, System and Service Engineering
2. Short Papers
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d7abc68-d8ba-46f9-ac70-15170a977b0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.