PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automatic adjustment of reactive power by FACTS devices under conditions of voltage instability in the electric network

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Automatyczna regulacja mocy biernej przez urządzenia FACTS w warunkach niestabilności napięcia w sieci elektrycznej
Języki publikacji
EN
Abstrakty
EN
This article describes the problem of automatic regulation of reactive power using electronic devices FACTS (Flexible AC Transmission Systems): static synchronous compensator (STATCOM) and unified power flow controller (UPFC). With the help of a complex writing form, the following are determined: voltages at the installation nodes of the FACTS device and loads, currents of loads, power sources and electronic compensators in caseof voltage instability at the load node of the electrical network. Voltages and currents are determined using the node-voltage method. The taskof STATCOM is partial or full compensation of reactive power. During the reduction of the voltage at the load node, the reactive power generatedby the power source decreases. The STATCOM should partially or fully compensate for the reactive power imbalance as quickly as possible. However,at the same time, it is not possible to fully compensate for the voltage reduction. A series-parallel or parallel-series UPFC can be used to solvethis problem. As a result of using the UPFC, it is possible to automatically raise the voltage level to acceptable values with the help of the UPFC series compensator. The analysis shows that the parallel-serial UPFC is characterized by the stability of operation.In the case of using a series-parallel UPFC, there are restrictions on the ability to adjust the imaginary voltage component of the series compensator, since the angle ofthe voltage vector changes, which causes a failure in the operation of the regulatorof the parallel compensator UPFC.
PL
W artykule opisano problematykę automatycznej regulacji mocy biernej za pomocą urządzeń elektronicznych FACTS (Flexible AC Transmission Systems): statycznego kompensatora synchronicznego (STATCOM) oraz regulatora przepływu mocy (UPFC). Za pomocą złożonego formularza rejestracyjnego określane są: napięcia w węzłach instalacji urządzenia FACTS i obciążenia, prądy obciążenia, źródeł zasilaniai kompensatorów elektronicznych w przypadku niestabilności napięcia w węźle obciążenia siecielektrycznej. Napięcia i prądy są wyznaczane metodą napięć węzłowych. Zadaniem STATCOM jest częściowa lub pełna kompensacja mocy biernej. Podczas spadku napięcia w węźle obciążenia, moc bierna generowana przez źródło zasilania maleje. STATCOMpowinien częściowo lub w pełni skompensować nierównowagę mocy biernej tak szybko,jak to możliwe. Jednocześnie jednak nie jest możliwe pełne skompensowanie spadku napięcia. W celu rozwiązania tego problemu można zastosować szeregowo-równoległy lub równoległo-szeregowy układ UPFC. W wyniku zastosowania UPFC możliwe jest automatyczne podniesienie poziomu napięcia do akceptowalnych wartości za pomocą kompensatora szeregowego UPFC. Analiza pokazuje, że równoległo-szeregowy UPFC charakteryzuje się stabilnością działania. W przypadku zastosowania szeregowo-równoległego UPFC istnieją ograniczenia w zakresie możliwości regulacji składowej urojonej napięcia kompensatora szeregowego, ponieważ zmienia się kąt wektora napięcia, co powoduje awarię działania regulatora kompensatora równoległego UPFC.
Rocznik
Strony
109--113
Opis fizyczny
Bibliogr. 15 poz., rys., wykr.
Twórcy
  • Vinnytsia National Technical University, Vinnytsia, Ukraine
  • Vinnytsia National Technical University, Vinnytsia, Ukraine
  • Vinnytsia National Technical University, Vinnytsia, Ukraine
  • Vinnytsia National Technical University, Vinnytsia, Ukraine
  • Vinnytsia National Technical University, Vinnytsia, Ukraine
  • D.Serikbayev East KazakhstanTechnical University, Ust-Kamenogorsk, Kazakhstan
  • Institute "Transport Engineering" of JSC "Academy of Logistics and Transport",Almaty, Kazakhstan
Bibliografia
  • [1] Bian J., Lemak T. A., Nelson R. J., Ramey D. G.: Power Flow Controller Models for Power System Simulations. Power System Technology 19(9), 1995, 15–19.
  • [2] Burbelo M. Y., Lebed D. Yu.: Investigation of the Efficiency of the Capacitor Voltage Control Circuit of a Unified Electricity Quality Regulator to Reduce Voltage Fluctuations. Visnyk VPI 1, 2023, 21–28 [http://doi.org/10.31649/1997-9266-2023-166-1-21-28].
  • [3] Burbelo M. Y., Lebed D. Yu., Leshchenko O. R.: Optimization of charge / discharge time of active filter capacitors during voltage fluctuations. Herald of Khmelnytskyi national university 4, 2022, 58–63 [http://doi.org/10.31891/2307-5732-2022-311-4-58-63].
  • [4] Cañizares C. A., Uzunovic E., Reeve J.: Transient Stability and Power Flow Models of the Unified Power Flow Controller for Various Control Strategies. International Journal of Energy Technology and Policy 4(3-4), 2006, 349–378.
  • [5] Hingorani N. G., Gyugyi L.: Understanding FACTS. Concepts and Technology of Flexible AC Transmission Systems. IEEE Press book, 2000.
  • [6] Huang Z., Ni Y., Shen C. M., Wu F. F., Chen S., Zhang B.: Application of Unified Power Flow Controller in Interconnected Power Systems–Modeling, Interface, Control Strategy and Case Study. IEEE Trans. Power Systems 15(2), 2000, 817–824,
  • [7] Lee H.-J., Lee D.-S., Yoon Y.-D.: Unified Power Flow Controller Based on Autotransformer Structure. Electronics 8, 2019, 1542 [http://doi.org/10.3390/electronics8121542].
  • [8] Lezhniuk P., Komar V., Rubanenko O.: Information Support for the Task of Estimation the Quality of Functioning of the Electricity Distribution Power Grids with Renewable Energy Source. IEEE 7th International Conference on Energy Smart Systems – ESS 2020, 2020, 168–171.
  • [9] Lezhniuk P., Kravchuk S., Netrebskiy V., Komar V., Lesko V.: Forecasting Hourly Photovoltaic Generation on Day Ahead. IEEE 6th International Conference on Energy Smart Systems – ESS 2019, 2019, 184–187.
  • [10] Lezhniuk P., Kravchuk S., Buslavets O.: Selfoptimization Modes of Electric Grids with Renewable Energy Sources Using the Principle of Least Action. IEEE 6th International Conference on Energy Smart Systems – ESS 2019, 2019, 33–36.
  • [11] Mihalic R., Zunko P., Povh D.: Improvement of Transient Stability Using Unified Power Flow Controller. IEEE Trans. Power Delivery 11(1), 1996, 485–491.
  • [12] Padiyar K. R., Kulkarni A. M.: Control Design and Simulation of Unified Power Flow Controller. IEEE Trans. Power Delivery 13(4), 1998, 1348–1354.
  • [13] Papic I., Zunko P., Povh D.: Basic Control of Unified Power Flow Controller. IEEE Trans. Power Systems 12(4), 1997, 1734–1739.
  • [14] Schauder C. D., Gyugyi L., Lund M. R., Hamai D. M., Rietman T. R., Torgerson D. R., Edris A.: Operation of the Unified Power Flow Controller (UPFC) Under Practical Constraints. IEEE Trans. Power Delivery 13(2), 1998, 630–639.
  • [15] Wang S., Han L., Chen K.: Comprehensive coordinated control strategy of virtual synchronous generators under unbalanced power grid. J. Power Electron. 2019, 19, 1554–1565.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d770adf-7c6c-409f-a168-6321600c34c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.