PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and structural characterization of niobium-doped hydroxyapatite ceramics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydroxyapatite (HAp) ceramic materials are consi-dered as one of the most promising implant materials in bone surgery and in dentistry. They exhibit unique biocompatibility, bioactivity, and osteoconductivity, which are the most desirable biomaterial features. However, HAp itself is brittle, has low strength, high degree of crystallinity and low solubility at physiological pH. Doping synthetic HAp with metal ions plays an important role in improving its structural and physico--chemical properties. HAp doped with niobium ions has not been widely investigated so far. However, the results of studies available in the literature show that the synthesized CaO-P2O5-Nb2O5 compounds still show good biocompatibility, very low cytotoxicity and, additionally, they stimulate osteoblast proliferation. Therefore, this study is dedicated to the niobium--doped HAp ceramics obtained by two methods: mechano-chemical synthesis and sol-gel method. Bioceramics chemical composition, morphology, and structure were characterized by means of scanning electron microscopy imaging, BET method, X-ray diffraction, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The results indicate that nanoceramics of non-stoichiometric HAp with a clear Ca deficiency on the nanograin surface were obtained. Moreover, it has been observed that the presence of Nb dopants and the synthesis method directly affect unit cell parameters, crystallinity degree, crystallites size, porosity and distribution of niobium in the grain structure. Mechano-chemical synthesis has allowed effective niobium incorporation into the HAp structure, leading to the quite homogeneous Nb distribution in the grain volume. Whereas, Nb-doping by sol-gel method has led to dopants location mainly on the grain surface.
Rocznik
Strony
10--15
Opis fizyczny
Bibliogr. 18 poz., rys., tab., zdj.
Twórcy
  • Department of Solid State Physics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
  • Department of Solid State Physics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
Bibliografia
  • [1] Best S.M., Porter A.E., Thian E.S., Huang J.: Bioceramics: Past, present and for the future. Journal of the European Ceramic Society 28 (2008) 1319-1327.
  • [2] Hong Y., Fan H., Li B., Guo B., Liu M., Zhang X.: Fabrication, biological effects, and medical applications of calcium phosphate nano-ceramics. Materials Science and Engineering R 70 (2010) 225-242.
  • [3] Orlovskii V.P., Komlev V.S., Barinov S.M.: Hydroxyapatite and Hydroxyapatite-Based Ceramics. Inorganic Materials 38 (2002) 973-984.
  • [4] Fihri A., Len C., Varma R. S., Solhy A.: Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis. Coordination Chemistry Reviews 347 (2017) 48-76.
  • [5] Ferraz M.P., Monteiro F.J., Manuel C.M.: Hydroxyapatite nano-particles: A review of preparation methodologies. Journal of Applied Biomaterials & Biomechanics 2 (2004) 74-80.
  • [6] Samani S., Hossainalipour S.M., Tamizifar M., RezaieIn H.R.: In vitro antibacterial evaluation of sol-gel-derived Zn-, Ag-, and (Zn + Ag)-doped hydroxyapatite coatings against methicillin-resistant Staphylococcus aureus. Journal of Biomedical Materials Research Part A 101 (A) (2013) 222-230.
  • [7] Adzila S., Murad M.C., Sopyan I.: Doping Metal into Calcium Phosphate Phase for Better Performance of Bone Implant Materials. Recent Patents on Mater. Sci. 5 (2012) 18-47.
  • [8] Šupová M.: Substituted hydroxyapatites for biomedical applications: A review. Ceramics International 41 (2015) 9203-9231.
  • [9] Capanema N.S.V., Mansur A.A.P., Carvalho S.M., Silva A.R.P., Ciminelli V.S., Mansur H.S.: Niobium-Doped Hydroxyapatite Bioce-ramics: Synthesis, Characterization and In Vitro Cytocompatibility. Materials 8 (2015) 4191-4209.
  • [10] Maeda H., Lee S., Miyajima T., Obata A., Ueda K., Narushima T., Kasuga T.: Structure and physicochemical properties of CaO-P2O5--Nb2O5-Na2O glasses. J. Non-Cryst. Solids 432 (2016) 60-64.
  • [11] Obata A., Takahashi Y., Miyajima T., Ueda K., Narushima T., Kasuga T.: Effects of Niobium Ions Released from Calcium Phosphate Invert Glasses Containing Nb2O5 on Osteoblast-Like Cell Functions. ACS Applied Materials & Interfaces 4 (2012) 5684-5690.
  • [12] Wagner C.D., Riggs W.M., Davis L.E., Moulder J.F., Muilenberg G.E.: Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corporation (1979).
  • [13] NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20, National Institute of Standards and Technology, Gaithersburg MD, 20899 (2000) [accessed 2019 Jan 20]. https://srdata.nist.gov/xps/.
  • [14] CasaXPS: Processing Software for XPS, AES, SIMS and More. c2018 Casa Software Ltd [accessed 2019 Jan 20]. http://www.casaxps.com/.
  • [15] Berzina-Cimdina L., Borodajenko N.: Research of Calcium Pho-sphates Using Fourier Transform Infrared Spectroscopy, Infrared Spectroscopy - Materials Science, Engineering and Technology, Prof. Theophanides Theophile (Ed.). InTech (2012) 123-148.
  • [16] Li P., Ohtsuki C., Kokubo T.: The role of hydrated silica, titania and alumina in introducing apatite on implants. J. Biomed. Mater. Res. 28 (1994) 7-15.
  • [17] Ozer N., Rubin M.D., Lampert C.M.: Optical and electroche-mical characteristics of niobium oxide films prepared by sol-gel process and magnetron sputtering A comparison. Sol. Energy Mater. Sol. Cells 40 (1996) 285-296.
  • [18] Simon D., Perrin C., Baillif P.: Electron spectrometry study (ESCA) of niobium and its oxides. Application to the oxidation at high temperature and low oxygen pressure. C. R. Acad. Sci. Ser. C 283 (1976) 241-244.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d75775c-edf7-4e96-a256-dddbf561004d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.