PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Algebraic Characterization of the Class of Languages Recognized by Measure Only Quantum Automata

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study a model of one-way quantum automaton where only measurement operations are allowed (MON-1QFA). We give an algebraic characterization of LMO(Σ), showing that the syntactic monoids of the languages in LMO(Σ) are exactly the J-trivial literally idempotent syntactic monoids, where J is the Green’s relation determined by two-sided ideals. We also prove that LMO(Σ) coincides with the literal variety of literally idempotent piecewise testable languages. This allows us to prove the existence of a polynomial-time algorithm for deciding whether a regular language belongs to LMO(Σ).
Wydawca
Rocznik
Strony
335--353
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
  • Dipartimento di Informatica, Università degli Studi di Milano, via Comelico 39/41, Milano, Italy
Bibliografia
  • [1] A. Ambainis, M. Beaudry, M. Golovkins, A. Kikusts, M. Mercer, D. Thérien, Algebraic Results on Quantum Automata, Theory Comp. Syst., vol. 39(1), (2006), 165-188.
  • [2] A. Bertoni, A. Brambilla, G. Mauri, N. Sabadini An application of the theory of free partially commutative monoids: asymptotic densities of trace languages, In: Proceedings of the 10th mathematical foundations of computer science. (1981) LNCS 118, Springer, 205-215.
  • [3] A. Bertoni, M. Carpentieri, Regular Languages Accepted by Quantum Automata, Inf. Comput., vol. 165(2), (2001), 174-182.
  • [4] A. Bertoni, C. Mereghetti, B. Palano, Quantum Computing: 1-Way Quantum Automata Developments in Language Theory 2003: 1-20.
  • [5] A. Bertoni, C. Mereghetti, B. Palano, Trace monoids with idempotent generators and measure-only quantum automata, Natural Comp., vol. 9(2), (2010), 383-395.
  • [6] A. Brodsky, N. Pippenger, Characterizations of 1-Way Quantum Finite Automata, SIAM J. Comput., vol. 31(5), (2002), 1456-1478.
  • [7] V. Diekert, G. Rozenberg, The book of traces, (1995) World Scientific, Singapore.
  • [8] S. Eilenberg, Automata, languages, and machines, vol. A, vol. B, Academic Press, 1976.
  • [9] Z. Esik and M. Ito, Temporal logic with cyclic counting and the degree of aperiodicity in finite automata, Acta Cybernetica 16 (2003), 1-28.
  • [10] Z. Esik and K.G. Larsen, Regular languages defined by Linström quantifiers, Theoretical Informatics and Applications 37 (2003), 197-242.
  • [11] D. Gottesman , I. Chuang (1999) Quantum teleportation as a universal computational primitive. Nature 402:390393. arXiv:quant-ph/9908010.
  • [12] J. Gruska, Quantum computing, (1999), McGraw-Hill.
  • [13] J.E. Hopcroft, An N Log N Algorithm for Minimizing States in a Finite Automaton, Technical Report. Stanford University, Stanford, CA, USA, 1971.
  • [14] H. Straubing, Finite automata, formal logic, and circuit complexity, Progress in Theoretical Computer Science, Birkhäuser Boston Inc., Boston, MA, 1994.
  • [15] O. Klıma, L. Polák, On Varieties of Literally Idempotent Languages, ITA 42(3), (2008), 583-598.
  • [16] M. Kunc, Equational description of pseudovarieties of homomorphisms, Theoretical Informatics and Applications 37 (2003), 243-254.
  • [17] A. Kondacs, J. Watrous, On the Power of Quantum finite-state Automata, FOCS (1997) 66-75.
  • [18] D. W. Leung (2004) Quantum computation by measurements, Int J Quant Inf 2:3343. arXiv:quant-ph/0310189, 2003.
  • [19] Nielsen MA (2003) Quantum computation by measurement and quantum memory, Phys Lett A 308:96100. arXiv:quant-ph/0108020.
  • [20] J. E. Pin, Varieties of formal languages, North Oxford, London and Plenum, New-York, 1986.
  • [21] I. Simon, Piecewise testable events, Automata Theory and Formal Languages, (1975), Springer, Lecture Notes in Computer Science, vol 33.
  • [22] H. Straubing, On logical descriptions of regular languages, Proc. Latin 2002, Springer Lecture Notes In Computer Science, Vol. 2286, 2002, 528-538.
  • [23] A.N. Trahtman, Piecewise and Local Threshold Testability of DFA, FCT (2001), 347-358.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d753e0d-0fe8-4cda-b951-a29de626e518
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.