PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strength testing of a modular trailer with a sandwich platform

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the experimental strength evaluation of modular car trailers with a maximum permissible total mass of up to 3500 kg and its application to assess the mechanical strength of box-type car trailers. Tests were carried out using an original test bench dedicated to fatigue testing. They aimed to compare a trailer made in traditional technology with a trailer equipped with a load-carrying structure containing a sandwich panel. As a result of the conducted work, the displacement values of the measurement points were measured. The deformation form of the trailer made in the traditional technology was compared with the trailer containing the sandwich panel. The proposed method of experimental strength evaluation of modular car trailers enables a quantitative assessment of the mechanical strength of the load-carrying structures of trailers. This results in improved safety of trailer operation in road traffic by identifying the critical elements of the load-carrying structure at the early design phase before the trailer is allowed to run on the road.
Słowa kluczowe
Rocznik
Strony
163--169
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Machine and Vehicle Design and Research, ul. Łukasiewicza 7/9, 50-371 Wroclaw, Poland
  • HONEYtech Sp. z o.o., Huta 58, 98-360 Lututów
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Machine and Vehicle Design and Research, ul. Łukasiewicza 7/9, 50-371 Wroclaw, Poland
Bibliografia
  • 1. Caban J, Nieoczym A, Gardyński L. Strength analysis of a container semi-truck frame. Engineering Failure Analysis 2021; 127(February): 105487, https://doi.org/10.1016/j.engfailanal.2021.105487.
  • 2. Chudzik A, Warda B. Fatigue life prediction of a radial cylindrical roller bearing subjected to a combined load using FEM. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2020; 22(2): 212-220, https://doi.org/10.17531/ein.2020.2.4.
  • 3. Chybowska D, Chybowski L, Guze S, Wilczyński P. A method for determining critical events during large disasters of production platforms. Journal of Loss Prevention in the Process Industries 2021; 72: 104528, https://doi.org/10.1016/j.jlp.2021.104528.
  • 4. Chybowska D, Guze S. A Multiphase Process Approach to the Analysis of the Reliability and Safety in Maritime Transport Systems. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation 2020; 14(4): 985-990, https://doi.org/10.12716/1001.14.04.25.
  • 5. Dȩbski H, Koszałka G, Ferdynus M. Wykorzystanie mes w analizie struktury nośnej ramy naczepy o zmiennych parametrach eksploatacyjnych. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2012; 14(2): 107-114.
  • 6. Działak P, Karliński J. Comparative examination of the trailer frame in accordance with UIC 596-5. Materials Today: Proceedings 2019; 12: 416-422, https://doi.org/10.1016/j.matpr.2019.03.144.
  • 7. Kozłowski E, Borucka A, Szymczak E, et al. Predicting the Fatigue Life of a Ball Joint. Transport and Telecommunication Journal 2021; 22(4): 453-460. https://doi.org/10.2478/ttj-2021-0035
  • 8. Giglio M, Gilioli A, Manes A. Numerical investigation of a three point bending test on sandwich panels with aluminum skins and NomexTM honeycomb core. Computational Materials Science 2012; 56: 69-78, https://doi.org/10.1016/j.commatsci.2012.01.007.
  • 9. Halfpenny A. Methods for accelerating dynamic durability tests. 9th International Conference on Recent Advances in Structural Dynamics 2006: 1-19.
  • 10. Han Y, Lin Y, Zhang C, Wang D F. Customer-related durability test of semi-trailer engine based on failure mode. Engineering Failure Analysis 2021; 120(September 2020): 105095, https://doi.org/10.1016/j.engfailanal.2020.105095.
  • 11. He M, Hu W. A study on composite honeycomb sandwich panel structure. Materials & Design 2008; 29(3): 709-713, https://doi.org/10.1016/j.matdes.2007.03.003.
  • 12. Kamiński Z, Kulikowski K. Determination of the functional and service characteristics of the pneumatic system of an agricultural tractor with mechanical brakes using simulation methods. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2015; 17(3): 355-364, https://doi.org/10.17531/ein.2015.3.5.
  • 13. Karlinski J, Ptak M, Chybowski L. A Numerical Analysis of the Working Machine Tyre Inflation Process to Ensure Operator Safety. Energies 2019, https://doi.org/10.3390/en12152971.
  • 14. Kepka M, Kepka M, Václavík J, Chvojan J. Fatigue life of a bus structure in normal operation and in accelerated testing on special tracks. Procedia Structural Integrity 2019; 17: 44-50, https://doi.org/10.1016/j.prostr.2019.08.007.
  • 15. Koziołek S. Inżynieria Wynalazczości. Metodologia projektowania innowacyjnych systemów technicznych. Wrocław, Oficyna Wydawnicza Politechniki Wrocławskiej: 2019.
  • 16. Mackiewicz A, Pyka D, Pach J et al. Comparison of Numerical Modelling Methods of Innovative Materials for Ballistic Shields. 2020: 119-127, https://doi.org/10.1007/978-3-030-34123-7_13.
  • 17. Mysior M, Hnat W, Koziołek S. Method of Identification of Useful Functions in the Scope of Technical System Development. 2019, https://doi.org/10.1007/978-3-030-32497-1_17.
  • 18. Mysior M. Metoda projektowania maszyn oraz urządzeń w aspekcie modułowości. 2021.
  • 19. Ptak M. Method to Assess and Enhance Vulnerable Road User Safety during Impact Loading. Applied Sciences 2019; 9(5): 1000, https://doi.org/10.3390/app9051000.
  • 20. Rusiński E. Zasady projektowania konstrukcji nośnych pojazdów samochodowych. Wrocław, Oficyna Wydawnicza Politechniki Wrocławskiej: 2002.
  • 21. Szymczak T, Brodecki A, Kowalewski Z L, Makowska K. Tow truck frame made of high strength steel under cyclic loading. Materials Today: Proceedings 2019; 12: 207-212, https://doi.org/10.1016/j.matpr.2019.03.115.
  • 22. Szymczak T, Brodecki A, Sobolewski T. Laboratoryjna ocena stanu technicznego komponentów do pojazdów samochodowych. Przegląd Techniczny 2021.
  • 23. Szymczak T, Cholewiński S, Sobolewski T. Badania wytrzymałościowe i stanowiskowe - jako narzędzie do oceny jakości technicznej materiałów i komponentów konstrukcyjnych związanych z bezpieczeństwem ruchu drogowego. Bezpieczeństwo Ruchu Drogowego 2020; 3-4: 21-24.
  • 24. Tello L, Castejon L, Malon H et al. Development of a fatigue life prediction methodology for welded steel semi-trailer components based on a new criterion. Engineering Failure Analysis 2020; 108(January 2019): 104268, https://doi.org/10.1016/j.engfailanal.2019.104268.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d678573-d515-4a72-a460-49a9b7174900
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.