PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Weathering in a regolith on the Werenskioldbreen Glacier forefield (SW Spitsbergen). 2. Speciation of Fe, Mn, Pb, Cu and Zn in the chronosequence

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The evolution of chemical speciation of Fe, Mn, Pb, Cu, and Zn was investigated in the chronosequence of young sediments, exposed by a currently retreating Arctic glacier on Spitsbergen. Werenskioldbreen is a 27 km2 subpolar, land-terminated, polythermal glacier in recession, located near the SW coast of West Spitsbergen. Three samples of structureless till were collected at locations exposed for 5, 45 and 70 years. Four grain-size fractions were separated: > 63, 20–63, 2–20, and < 2 µm. Speciation of Fe, Mn, Pb, Cu, and Zn was determined using a 6-step sequential chemical extraction method: 1) 1 M sodium acetate, 2) 1 M hydroxylamine hydrochloride in acetic acid, 3) sodium dithionite in buffer, 4) acid ammonium oxalate, 5) boiling HCl, 6) residuum. The weathering in the proglacial area of the retreating glacier is very fast. The geochemical fates of the metals in question correlate with each other, reflecting a) the geochemical similarities between them, b) the similarities of their primary mineral sources, c) the significant role of incongruent dissolution. The weathering processes dominating the system are redox reactions and incongruent dissolution, followed by precipitation of secondary phases and partial sorption of aqueous species. As a result, the elements released from weathering minerals are only partially transported away from the system. The remaining part transforms by weathering from the coarse-grained fraction (dominated by fragments of primary minerals) into the fine-grained fraction (in the form of secondary, authigenic minerals or as species sorbed onto a mineral skeleton). This is very strongly pronounced within the chronosequence: the content of each of the metals studied correlates identically with the grain size, despite the differences in their chemical character and affinities. The microscope study presented herein indicates that the role of incongruent dissolution previously was underestimated. Also, the formation of coatings of secondary phases on primary mineral surfaces was observed. All these rapid weathering processes affect the mineral speciation of initial soils as well as the composition of mineral suspensions transported away by rivers to the nearby ocean.
Rocznik
Strony
317--341
Opis fizyczny
Bibliogr. 106 poz., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Mineralogy, Petrography and Geochemistry, al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Mineralogy, Petrography and Geochemistry, al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Mineralogy, Petrography and Geochemistry, al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Mineralogy, Petrography and Geochemistry, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Mineralogy, Petrography and Geochemistry, al. Mickiewicza 30, 30-059 Kraków, Poland
  • University of Warmia and Mazury in Olsztyn, Faculty of Biology and Biotechnology, Department of Microbiology, Oczapowskiego 1a, 10-917, Olsztyn, Poland
Bibliografia
  • 1. Arrigo, K. R., van Dijken, G. L., Castelao, R. M., Luo, H., Rennermalm, A. K., Tedesco, M., Mote, T. L., Oliver, H. & Yager, P. L., 2017. Melting glaciers stimulate large summer phytoplankton blooms in southwest Greenland waters. Geophysical Research Letters, 44: 6278-6285.
  • 2. Beaulieu, E., Godderis, Y, Donnadieu, Y., Labat, D. & Roelandt, C., 2012. High sensitivity of the continental-weathering carbon dioxide sink to future climate change. Nature Climate Change, 2: 346-349.
  • 3. Berner, R. A., Lassaga, A. C. & Garrels, R. M., 1983. The carbon-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. American Journal of Science, 283: 641-683.
  • 4. Bhatia, M. P., Kujawinski, E. B., Das, S. B., Breier, C. F., Henderson, P. B. & Charette, M. A., 2013. Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean. Nature Geoscience, 6: 274-277.
  • 5. Bigham, J. M., Schwertmann, U., Traina, S. J., Winland, R. L. & Wolf, M., 1996. Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochimica et Cosmochimica Acta, 60: 2111-2121.
  • 6. Boyd, P. W., Jickells, T., Law, C. S., Blain, S., Boyle, E. A., Buesseler, K. O., Coale, K. H., Cullen, J. J., de Baar, J. W., Follows, M., Harvey, M., Lancelot, C., Levasseur, M., Owens, N. P. J., Pollard, R., Rivkin, R. B., Sarmiento, J., Schoemann, V., Smetacek, V., Takeda, S., Tsuda, A., Turner, S. & Watson, A. J., 2007 Mesoscale iron enrichment experiments 1993-2005: synthesis and future directions. Science, 315: 612-617.
  • 7. Bukowska-Jania, E., 2003. The Role of Glacier Systems in the Migration of Calcium Carbonate in the Natural Environment. Wydawnictwo Uniwersytetu Śląskiego, Katowice, 248 pp. [In Polish, with English summary.]
  • 8. Chester, R. & Hughes, M. J., 1967. A chemical technique for the separation of ferro-manganese materials, carbonate minerals and adsorbed trace elements from pelagic sediments. Chemical Geology, 2: 249-262.
  • 9. Collins, M., Knutti, R., Arblaster, J., Dufresne, J-L., Fichefet, T., Friedligstein, P., Gao, X., Gutowski, W. J. Jr., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A. J. & Wehner, M., 2013. Long-term climate change: projections, commitments and irreversibility. In: Stocker, T. F., Quin, D., Plattner, G-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y, Bow, V. & Midgley, P. M. (eds), Climate Change 2013: The Physical Science Basis. Contributions of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 1029-1136.
  • 10. Cornell, R. M. & Schwertmann, U., 2003. The Iron Oxides. Structure, Properties, Reactions, Occurrences, and Uses, 2nd Edition. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, 664 pp.
  • 11. Czerny, J., Kieres, A., Manecki., M. & Rajchel, J. (ed.) 1993. Geological Map of the SW part of Wedel Jarlsberg Land Spitsbergen, 1:25 000. Institute of Geology and Mineral Deposits, University of Mining and Metallurgy, Kraków.
  • 12. Czerny, J., Lipień, G., Manecki, A. & Piestrzyński, A., 1992a. Geology and ore-mineralization of the Hecla Hoek succession (Precambrian) in front of Werenskioldbreen, South Spitsbergen. Studia Geologica Polonica, 98: 67-113.
  • 13. Czerny, J., Pływacz, I. & Szubała, L., 1992b. Siderite mineralization in the Hecla Hoek Succession (Precambrian) at Strypegga, South Spitsbergen. Studia Geologica Polonica, 98: 154170.
  • 14. Dahms, D., Favilli, F., Krebs, R. & Egli, M., 2012. Soil weathering and accumulation rates of oxalate-extractable phases derived from alpine chronosequences up to 1 Ma in age. Geomorphology, 151-152: 99-113.
  • 15. Death, R., Wadham, J. L., Monteiro, F., Le Brocq, A. M., Tranter, M., Ridgwell, A., Dutkiewicz, S. & Raiswell, R., 2014. Antarctic ice sheet fertilises the Southern Ocean. Biogeosciences, 11: 2635-2644.
  • 16. Dosseto, A., Vigier, N., Joannes-Boyau, R., Moffat, I., Singh, T. & Srivastava, P., 2015. Rapid response of silicate weathering rates to climate change in Himalaya. Geochemical Perspectives Letters, 1: 10-19.
  • 17. Douglas, G. B., Hart, B. T., Beckett, R., Gray, C. M. & Oliver, R. L., 1999. Geochemistry of suspended particulate matter (SPM) in the Murray-Darling river system: A conceptual isotopic/geochemical model for the fractionation of major, trace and rare earth elements. Aquatic Geochemistry, 5: 167-194.
  • 18. Fabri, R. Jr., Krause, M., Dalfior, B. M., Salles, R. C., de Freitas, A. C., da Silva, H. E., Licinio, M. V. V. J., Brandäo, G. P. & Carneiro, M. T. W. D., 2018. Trace elements in soil, lichens, and mosses from Fildes Peninsula, Antarctica: spatial distribution and possible origins. Environmental Earth Sciences, 77: 124.
  • 19. Figura, P, Manecki, M. & Rzepa, G., 2014. Weathering of siderite in the polar conditions. Geology, Geophysics & Environment, 40: 84-85.
  • 20. Gałeczka, I., Eiriksdottir, E. S., Hardardottir, J., Oelkers, E. H., Torssander, P. & Gislason, S. R., 2015. The effect of the 2002 glacial flood on dissolved and suspended chemical fluxes in the Skafta river, Iceland. Journal of Volcanology and Geothermal Research, 301: 253-276.
  • 21. Gonet, T., Górka-Kostrubiec, B. & Łuczak-Wilamowska, B., 2018. Assessment of topsoil contamination near the Stanisław Siedlecki Polish Polar Station in Hornsund, Svalbard, using magnetic methods. Polar Science, 15: 75-86.
  • 22. Górniak, D., Marszałek, H., Kwaśniak-Kominek, M., Rzepa, G. & Manecki, M., 2017. Soil formation and initial microbiological activity on a foreland of an Arctic glacier (SW Svalbard). Applied Soil Ecology, 114: 34-44.
  • 23. Grodzińska, K. & Godzik, B., 1991. Heavy metals and sulphur in mosses from southern Spitsbergen. Polar Research, 9: 133-140.
  • 24. Gulińska, J., Rachlewicz, G., Szczuciński, W., Barałkiewicz, D., Kózka, M., Bulska, E. & Burzyk, M., 2003. Soil contamination in High Arctic areas of human impact, Central Spitsbergen, Svalbard. Polish Journal of Environmental Studies, 12: 701-707.
  • 25. Hagen, J. O., Liestol, O., Roland, E. & Jorgensen, T., 1993. Glacier atlas of Svalbard and Jan Mayen. Meddeleser Nr. 129. Norsk Polarinstitutt, Oslo, 143 pp.
  • 26. Hawking, J. R., Benning, L. G., Raiswell, R., Kaulich, B., Araki, T., Abyaneh, M., Stockdale, A., Koch-Müller, M., Wadham, J. L. & Tranter, M., 2018. Biolabile ferrous iron bearing nanoparticles in glacial sediments. Earth and Planetary Science Letters, 493: 92-101.
  • 27. Hawking, J. R., Wadham, J. L., Benning, L. G., Hendry, K. R., Tranter, M., Tedstone, A., Nienow, P. & Raiswell, R., 2017. Ice sheets as a missing source of silica to the polar oceans. Nature Communications, 8: 14198.
  • 28. Hawking, J. R., Wadham, J. L., Tranter, M., Lawson, E., Sole, A., Cowton, T., Tedstone, A. J., Bartholomew, I., Nienow, P., Chandler, D. & Telling, J., 2015. The effect of warming climate on nutrient and solute export from the Greenland Ice Sheet. Geochemical Perspectives Letters, 1: 94-104.
  • 29. Hawking, J. R., Wadham, J. L., Tranter, M., Raiswell, R., Benning, L. G., Statham, P. J., Tedstone, A., Nienow, P., Lee, K. & Telling, J., 2014. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nature Communications, 5: 3929.
  • 30. He, L. & Tang, Y., 2008. Soil development along primary succession sequences on moraines of Hailuogou Glacier, Gongga Mountain, Sichuan, China. Catena, 72: 259-269.
  • 31. Hiemstra, T., 2015. Formation, stability, and solubility of metal oxide nanoparticles: surface entropy, enthalpy, and free energy of ferrihydrite. Geochimica et Cosmochimica Acta, 158: 179-198.
  • 32. Hirst, C., Andersson, P. S., Shaw, S., Burke, I. T., Kutcher, L., Murphy, M. J., Maximov, T., Pokrovsky, O. S., Mörth, C-M. & Porcelli, D., 2017. Characterisation of Fe-bearing particles and colloids in the Lena River basin, NE Russia. Geochimica et Cosmochimica Acta, 213: 553-573.
  • 33. Ignatiuk, D. & Migała, K., 2013. Werenskiold glacier. In: Zwoliński, Z., Kostrzewski, A., Pulina, M. (eds), Ancient and Modern Geoecosystems of Spitsbergen. Association of Polish Geomorphologists, Poznań, pp. 96-99.
  • 34. Kabała, C. & Zapart, J., 2009. Recent, relic and buried soils in the forefield of Werenskiold Glacier, SW Spitsbergen. Polish Polar Research, 30: 161-178.
  • 35. Kabała, C. & Zapart, J., 2012. Initial soil development and carbon accumulation on moraines of the rapidly retreating Werenskiold Glacier, SW Spitsbergen, Svalbard archipelago. Geoderma, 175-176: 9-20.
  • 36. Kiczka, M., Wiederhold, J. G., Frommer, J., Voegelin, A., Kraemer, S. M., Bourdon, B. & Kretzschmar, R., 2011. Iron speciation and isotope fractionation during silicate weathering and soil formation in an alpine glacier forefield chronosequences. Geochimica et Cosmochimica Acta, 75: 5559-5573.
  • 37. Kieres, A. & Piestrzyński, A., 1992. Ore-mineralization of the Hecla Hoek succession (Precambrian) around Werenskioldbreen, South Spitsbergen. Studia Geologica Polonica, 98: 116-151.
  • 38. Kowalska, A. & Sroka, W., 2008. Sedimentary environment of the Nottinghambukta delta, SW Spitsbergen. Polish Polar Research, 29: 245-259.
  • 39. Krajcarová, L., Novotný, K., Chattová, B. & Elster, J., 2016. Elemental analysis of soils and Salix polaris in the town of Pyramiden and its surroundings (Svalbard). Environmental Science and Pollution Research, 23: 10124-10137.
  • 40. Kwaśniak-Kominek, M., Manecki, M., Rzepa, G., Płonka, A. & Górniak, D., 2016. Weathering in a regolith on the Werenskioldbreen glacier forefield (SW Spitsbergen): Modeling of pore water chemistry. Annales Societatis Geologorum Poloniae, 86: 249-264.
  • 41. Laska, M., Barzycka, B. & Luks, B., 2017. Melting characteristics of snow cover on tidewater glaciers in Hornsund Fjord, Svalbard. Water, 9: 804.
  • 42. Liu, X. & Millero, F. J., 2002. The solubility of iron in seawater. Marine Chemistry, 7: 43-54.
  • 43. Majchrowska, E., Ignatiuk, D., Jania, J., Marszałek, H. & Wąsik, M., 2015. Seasonal and interannual variability in runoff from the Werenskioldbreen catchment, Spitsbergen. Polish Polar Research, 36: 197-224.
  • 44. Majka, J., Be’eri-Shlevin, Y, Gee, D. G., Czerny, J., Frei, D. & Ladenberger, A., 2013. Torellian (c. 640 Ma) metamorphic overprint of the Tonian (c. 950Ma) basement in the Caledonides of southwestern Svalbard. Geological Magazine, 151: 732-748.
  • 45. Majka, J., Czerny, J., Mazur, S., Holm, D. K. & Manecki, M., 2010. Neoproterozoic metamorphic evolution of the Isbjørnhamna Group rocks from south-western Svalbard. Polar Research, 29: 250-264.
  • 46. Majka, J., Mazur, S., Manecki, M., Czerny, J. & Holm, D. K., 2007. Late Neoproterozoic amphibolite facies metamorphism of a pre-Caledonian basement block in southwest Wedel Jarlsberg Land, Spitsbergen: new evidence from U-Th-Pb dating of monazite. Geological Magazine, 145: 822-830.
  • 47. Manecki, M., Holm, D. K., Czerny, J. & Lux, D., 1998. Thermochronological evidence for late Proterozoic (Vendian) cooling in southwest Wedel Jarlsberg Land, Spitsbergen. Geological Magazine, 135: 63-69.
  • 48. Mapelli, F., Marasco, R., Fusi, M., Scaglia, B., Tsiamis, G., Rolli, E., Fodelianakis, S., Bourtzis, K., Ventura, S., Tambone, F., Adani, F., Borin, S. & Daffonchio, D., 2018. The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence. The ISME Journal, 12: 1188-1198.
  • 49. Marsz, A. A. & Styszyńska, A. (eds), 2013. Climate and Climate Change at Hornsund, Svalbard. Gdynia Maritime University, Gdynia, 402 pp.
  • 50. Marszałek, H. & Górniak, D., 2017. Changes in water chemistry along the newly formed High Arctic fluvial-lacustrine system of the Brategg Valley (SW Spitsbergen, Svalbard). Environmental Earth Science, 76: 449.
  • 51. Martinez-Garcia, A., Sigman, D. M., Ren, H., Anderson, R. F., Straub, M., Hodell, D. A., Jaccard, S. L., Eglinton, T. I. & Haug, G. H., 2014. Iron fertilization of the Subantarctic Ocean during the last ice age. Science, 343: 1347-1350.
  • 52. Mavris, C., Egli, M., Plötze, M., Blum, J. D., Mirabella, A., Giaccai, D. & Haeberli, W., 2010. Initial stages of weathering and soil formation in the Morteratsch proglacial area (Upper Engadine, Switzerland). Geoderma, 155: 359-371.
  • 53. Mavris, C., Plötze, M., Mirabella, A., Giaccai, D., Valboa, G. & Egli, M., 2011. Clay mineral evolution along a soil chronosequence in an Alpine proglacial area. Geoderma, 165: 106-117.
  • 54. Mehra, O. P. & Jackson, M. L., 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 7: 317-327.
  • 55. Melke, J., 2006. The contents of selected trace elements in the soils of Bellsund, Spitsbergen. Polish Journal of Soil Science, 39: 21-32.
  • 56. Melke, J. & Chodorowski, J. 2006. Formation of Arctic soils in Chamberlindalen, Bellsund, Spitsbergen. Polish Polar Research, 27: 119-132.
  • 57. Meyer, C. R. & Minchew, B. M., 2018. Temperate ice in the shear margins of the Antarctic Ice Sheet: Controlling processes and preliminary locations. Earth and Planetary Science Letters, 498: 17-26.
  • 58. Moskovchenko, D. V, Kurchatova, A. N., Fefilov, N. N. & Yurtaev, A. A., 2017. Concentrations of trace elements and iron in the Arctic soils of Belyi Island (the Kara Sea, Russia): patterns of variation across landscapes. Environmental Monitoring and Assessment, 189: 210.
  • 59. Olichwer, T., Tarka, R. & Modelska, M., 2013. Chemical composition of groundwaters in the Hornsund region, southern Spitsbergen. Hydrology Research, 44: 117-130.
  • 60. Olsen, M. S., Callaghan, T. V, Reist, J. D., Reiersen, L. O., Dahl Jensen, D., Granskog, M. A., Goodison, B., Hovelsrud, G. K., Johansson, M., Kallenborn, R., Key, J., Klepikov, A., Meier, W., Overland, J. E., Prowse, T. D., Sharp, M., Vincent, W. F. & Walsh, J., 2011. The changing Arctic cryosphere and likely consequences: an overview. AMBIO, 40: 111-118.
  • 61. Osuch, M. & Wawrzyniak, T., 2016. Climate projections in the Hornsund area, Southern Spitsbergen. Polish Polar Research, 37: 379-402.
  • 62. Overeem, I., Hudson, B. D., Syvitski, J. P. M., Mikkelsen, A. B., Hasholt, B., van den Broeke, M. R., Noěl, B. P. Y. & Morlighem, M., 2017. Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland. Nature Geoscience, 10: 859-863.
  • 63. Pachauri, R. J., Meyer, L. & The Core Writing Team, 2014. Climate Change 2014: Synthesis Report. http://ipcc.ch/pdf/as- sessment-report/ar5/syr/SYR_AR5_FINAL_full_wcover.pdf
  • 64. Pälli, A., Moore, J. C., Jania, J., Kolondra, L. & Głowacki, P., 2003. The drainage pattern of Hansbreen and Werenskioldbreen, two polythermal glaciers in Svalbard. Polar Research, 22: 355-371.
  • 65. Pirożnikow, E. & Górniak, A., 1992. Changes in the characteristics of the soil and vegetation during the primary succession in the marginal zone of the Werenskiold glacier, Spitsbergen. Polish Polar Research, 13: 19-29.
  • 66. Plichta, W. & Kuczyńska, I., 1991. Metal contents in soils of Kaffiøyra, Spitsbergen. Polish Polar Research, 12: 183-193.
  • 67. Poulton, S. W. & Canfield, D. E., 2005. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chemical Geology, 214: 209-221.
  • 68. Poulton, S. W. & Raiswell, R., 2002. The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition. American Journal of Science, 302: 774-805.
  • 69. Poulton, S. W. & Raiswell, R., 2005. Chemical and physical characteristics of iron oxides in riverine and glacial meltwater sediments. Chemical Geology, 218: 203-221.
  • 70. Raiswell, R., 2011a. Iron transport from the continents to the open ocean: the aging-rejuvenation cycle. Elements, 7: 101-106.
  • 71. Raiswell, R., 2011b. Iceberg-hosted nanoparticulate Fe in the Southern Ocean: Mineralogy, origin, dissolution kinetics and source of bioavailable Fe. Deep Sea Research II, 58: 1364-1375.
  • 72. Raiswell, R., Benning, L. G., Davidson, L. & Tranter, M., 2008. Nanoparticulate bioavailable iron minerals in icebergs and glaciers. Mineralogical Magazine, 72: 345-348.
  • 73. Raiswell, R., Benning, L. G., Davidson, L., Tranter, M. & Tulaczyk, S., 2009. Schwertmannite in wet, acid, and oxicmic roenvironments beneath polar and polythermal glaciers. Geology, 37: 431-434.
  • 74. Raiswell, R. & Canfield, D. E., 2012. The iron biogeochemical cycle past and present. Geochemical Perspectives, 1: 1-220.
  • 75. Raiswell, R., Canfield, D. E. & Berner, R. A., 1994. A comparison of iron extraction methods for the determination of degree of pyritization and recognition of iron-limited pyrite formation. Chemical Geology, 111: 101-111.
  • 76. Raiswell, R., Hawking, J. R., Benning, L. G., Baker, A. R., Death, R., Albani, S., Mahowald, N., Krom, M. D., Poulton, S. W., Wadham, J. & Tranter, M., 2016. Potentially bioavailable iron delivery by iceberg-hosted sediments and atmospheric dust to the polar oceans. Biogeosciences, 13: 3887-3900.
  • 77. Raiswell, R., Tranter, M., Benning, L. G., Siegert, M., De’ath, R., Huybrechts, P. & Payne, T., 2006. Contributions from glacially derived sediment to the global iron (oxyhydr)oxide cycle: Implications for iron delivery to the oceans. Geochimica et Cosmochimica Acta, 70: 2765-2780.
  • 78. Regenspurg, S., Brand, A. & Peiffer, S., 2004. Formation and stability of schwertmannite in acidic mining lakes. Geochimica et Cosmochimica Acta, 68: 1185-1197.
  • 79. Reinardy, B. T. I., Booth, A. D., Hughes, A. L. C., Boston, C. M., Äkesson, H., Bakke, J., Nesje, A., Giesen, R. H. & Pearce, D. M., 2019. Pervasive cold ice within a temperate glacier - implications for glacier thermal regimes, sediment transport and foreland geomorphology. The Cryosphere, 13: 827-843.
  • 80. Righi, D., Huber, K. & Keller, C., 1999. Clay formation and podzol development from postglacial moraines in Switzerland. Clay Minerals, 34: 319-332.
  • 81. Ross, K. W. & Wang, J., 1993. Extractable Al, Fe, Mn and Si, In: Carter, M. R. (ed.), Soil Sampling and Methods of Analysis. Lewis Publishers, pp. 239-246.
  • 82. Rysgaard, S., Mortensen, J., Juul-Pedersen, T., S0rensen, L. L., Lennert, K., S0ggard, D. H., Arendt, K. E., Blicher, M. E., Sejr, M. K. & Bendtsen, J., 2012. High air-sea uptake rates in nearshore and shelf areas of Southern Greenland: temporal and spatial variability. Marine Chemistry, 128-129: 26-33.
  • 83. Rzepa, G., Bajda, T. & Sikora, M., 2006. Speciation and concentration of trace elements in the ferruginous sediments of Poland. Polish Journal of Environmental Studies, 15, 2a: 474-478.
  • 84. Sharp, M. & Tranter, M., 2017. Glacier biogeochemistry. Geochemical Perspectives, 6, 2: 1-340.
  • 85. Shepherd, A., Ivins, E. R., Geruo, A., Barletta, V. R., Bentley, M. J., Bettadpur, S., Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N., Horwath, M., Jacob, S., Joughin, I., King, M. A., Lenaerts, J. T. M., Li, J., Ligtenberg, S. R. M., Luckman, A., Luthcke, S. B., McMillan, M., Meister, R., Milne, G., Mouginout, J., Muir, A., Nicolas, J. P., Paden, J., Payne, A. J., Pritchard, H., Rignot, E., Rott, H., Sørensen, L. S., Scambos, T. A., Scheuchl, B., Schrama, E. J. O., Smith, B., Sundal, A. V, van Angelen, J. H., van de Berg, W. J., van den Broeke, M. R., Vaughan, D. G., Velicogna, I., Wahr, J., Whitehouse, P. L., Wingham, D. J., Yi, D., Young, D. & Zwally, H. J., , 2012. A reconciled estimate of ice sheet mass balance. Science, 338: 1183-1189.
  • 86. Shoenfelt, E. M., Sun, J., Winckler, G., Kaplan, M. R., Borunda, A. L., Farrell, K. R., Moreno, P. I., Gaiero, D. M., Recasens, C., Sambrotto, R. N. & Bostick, B. C., 2017. High particulate iron(II) content in glacially sourced dusts enhances productivity of a model diatom. Science Advances, 3: e1700314.
  • 87. Singh, A. K., Hasnain, S. I. & Banerjee, D. K., 1999. Grain size and geochemical partitioning of heavy metals of the Damodar River - a tributary of the lower Ganga, India. Environmental Geology, 39: 90-98.
  • 88. Skiba, S., Drewnik, M. & Kacprzak, A., 2002. Soils of the western coast of Sörkappland. In: Ziaja, W. & Skiba, S. (eds), Sörkappland Landscape Structure and Functioning (Spitsbergen, Svalbard). Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków, pp. 51-86.
  • 89. Sobota, I., 2016. Icings and their role as an important element of the cryosphere in High Arctic glacier forefields. Bulletin of Geography, Physical Geography Series, 10: 81-93.
  • 90. Stachnik, Ł., Majchrowska, E., Yde, J. C., Nawrot, A. P., Cichała-Kamrowska, K., Ignatiuk, D. & Piechota, A., 2016. Chemical denudation and the role of sulfide oxidation at Werenskioldbreen, Svalbard. Journal of Hydrology, 538: 177-173.
  • 91. Szymański, W., Siwek, J., Waścińska, J. & Wojtuń, B., 2016. Texture and geochemistry of surface horizons of Arctic soils from a non-glaciated catchment, SW Spitsbergen. Polish Polar Research, 37: 361-377.
  • 92. Szymański, W., Skiba, S. & Wojtuń, B., 2013. Distribution, genesis and properties of Arctic soils: a case study from the Fuglebekken catchment, Spitsbergen. Polish Polar Research, 34: 289-304.
  • 93. Szymański, W., Skiba, M., Wojtuń, B. & Drewnik, M., 2015. Soil properties, micromorphology, and mineralogy of Cryosols from sorted and unsorted patterned grounds in the Hornsund area, SW Spitsbergen. Geoderma, 253-254: 1-11.
  • 94. Szynkiewicz, A., Modelska, M., Buczyński, S., Borrok, D. M. & Merrison, J. P., 2013. The polar sulfur cycle in the Werenskioldbreen, Spitsbergen: Possible implications of understanding the deposition of sulfate minerals in the North Polar Region of Mars. Geochimica et Cosmochimica Acta, 106: 326-343.
  • 95. Taylor, K. G. & Konhauser, K. O., 2011. Iron in Earth surface systems: a major player in chemical and biological processes. Elements, 7: 83-88.
  • 96. Taylor, L. L., Quirk, J., Thorley, R. M. S., Kharecha, P. A., Hansen, J., Ridgwell, A., Lomas, M. R., Banwart, S. A. & Beerling, D. J., 2016. Enhanced weathering strategies for stabilizing climate and averting ocean acidification. Nature Climate Change, 6: 402-408.
  • 97. Tessier, A., Campbell, P. G. C. & Bisson, M., 1979. Sequential extraction for the speciation of particulate trace metals. Analytical Chemistry, 51: 844-851.
  • 98. Wadham, J. L., De’ath, R., Monteiro, F. M., Tranter, M., Ridgwell, A., Raiswell, R. & Tulaczyk, S., 2013. The potential role of the Antarctic Ice Sheet in global biogeochemical cycles. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 10: 1-13.
  • 99. Wadham, J. L., Tranter, M., Skidmore, M., Hodson, A. J., Priscu, J., Lyons, W. B., Sharp, M., Wynn, P. & Jackson, M., 2010. Biogeochemical weathering under ice: Size matters. Global Biogeochemical Cycles, 24: GB3025.
  • 100. Walker, J. C. G., Hays, P. B. & Kasting, J. F., 1981. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. Journal of Geophysical Research, 86: 9776-9782.
  • 101. Wojcik, R., Donhauser, J., Holm, S., Malard, L., Holland, A., Frey, B., Wagner, D., Pearce, D., Anesio, A., Hövelmann, J. & Bennin L. G., 2017. Geochemical and microbiological succession patterns in a High-Arctic proglacial area. Goldschmidt Conference, Paris. DOI: 10.13140/RG.2.2.15750.06723.
  • 102. Yde, J. C., Riger-Kusk, M., Christiansen, H. H., Knudsen, N. T. & Humlum, O., 2008. Hydrochemical characteristics of bulk meltwater from the entire ablation season, Longyerbreen, Svalbard. Journal of Glaciology, 54: 259-272.
  • 103. Zaborska, A., Beszczyńska-Möller, A. & Włodarska-Kowalczuk, M., 2017. History of heavy metal accumulation in the Svalbard area: Distribution, origin and transport pathways. Environmental Pollution, 231: 437-450.
  • 104. Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S. U., Hoelzle, M., Paul, F., Haeberli, W., Denzinger, F., Ahlstrøm, A. P., Anderson, B., Bajracharya, S., Baroni, C., Braun, L. N., Cáceres, B. E., Cassaya, G., Cobos, G., Dávila, L. R., Delgado Granados, H., Demuth, M. N., Espizua, L., Fischer, A., Fujita, K., Gadek, B., Ghazanfar, A., Hagen, J. O., Holmlund, P., Karimi, N., Li, Z., Pelto, M., Pitte, P., Popovnin, V. V., Portocarrero, C. A., Prinz, R., Sangewar, C. V., Severskiy, I., Sigurđsson, O., Soruco, A., Usubaliev, R. & Vincent, C., 2015. Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology, 61: 745-762.
  • 105. Zhang, Z., Bi, X., Li, X., Zhao, Q. & Chen, H., 2018. Schwertmannite: occurrence, properties, synthesis and application in environmental remediation. RSC Advances, 8: 33583-33599.
  • 106. Zwoliński, Z., Giżejewski, J., Karczewski, A., Kasprzak, M., Lankauf, K. R., Migoń, P., Pękala, K., Repelewska-Pękalowa, J., Rachlewicz, G., Sobota, I., Stankowski, W. & Zagórski, P., 2013. Geomorphological settings of Polish research areas on Spitsbergen. Landform Analysis, 22: 125-143.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d66b67a-4b83-4bae-8182-9b0cf778aea1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.