Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The goal of this paper is to present the corrosion properties of the ultrafine grained Mg-1Zn-1Mn-0.3Zr bulk alloy after surface modification during HF and NaHCO3 treatment. Design/methodology/approach: An ultrafine grained Mg-1Zn-1Mn-0.3Zr bulk alloy was synthesized by consolidating mechanically alloyed powders. The phase and microstructure analysis was carried out using X-ray diffraction, scanning electron microscopy and the properties were measured using corrosion testing equipment. Findings: The sintering of Mg-1Zn-1Mn-0.3Zr powders led to the formation of bulk material with an average grain size of about 73 nm. Ultrafine grained Mg-1Zn-1Mn-0.3Zr alloy was more corrosion resistant than microcrystalline Mg. Practical implications: The results showed an improved corrosion resistance of HF and NaHCO3 treated Mg-1Zn-1Mn-0.3Zr alloy in Ringer solution compared with the untreated sample. The corrosion rate of treated samples followed the order HF
Wydawca
Rocznik
Tom
Strony
53--59
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
- Institute of Materials Science and Engineering, Poznan University of Technology, ul. Jana Pawła II 24, 61-138 Poznań, Poland
autor
- Institute of Materials Science and Engineering, Poznan University of Technology, ul. Jana Pawła II 24, 61-138 Poznań, Poland
Bibliografia
- [1] R.C. Zeng, K. Wang, Y.B. Xu, E.H. Han, Z.Y. Zhu, Recent development and application of magnesium alloy, Acta Metallurgica Sinica 9 (2001) 673-685.
- [2] G. Song, Recent progress in corrosion and protection of magnesium alloys, Advanced Engineering Materials 7 (2005) 563-586.
- [3] F. White, The history of biodegradable magnesium implants, Acta Biomaterials 6 (2010) 1680-1692.
- [4] N. Li, C. Guo, Y.H. Wu, Y.F. Zheng, L.Q. Ruan, Comparative study on corrosion behaviour of pure Mg and WE43 alloy in static, stirring and flowing Hank’s solution, Corrosion Engineering, Science and Technology 47 (2012) 346-351.
- [5] C.H. Ye, T.F. Xi, Y.F. Zheng, S.Q. Wang, Y.D. Li, In vitro corrosion and biocompatibility of phosphating modified WE43 magnesium alloy, Transactions of Nonferrous Metals Society of China 23 (2013) 996-1001.
- [6] B.C. Ward, T.J. Webster, Increased functions of osteoblasts on nanophase metals, Materials Science and Engineering: C 27 (2007) 575-578.
- [7] C. Suryanarayna, Mechanical alloying, Progrress in Materials Science 46 (2001) 1-184.
- [8] R.Z. Valiev, R.K., Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progrress in Materials Science 45 (2000) 103-189.
- [9] K. Kowalski, M. Nowak, M. Jurczyk, Mechanical and corrosion properties of magnesium-bioceramic nanocomposites, Archives of Metallurgy and Materials (2016) (in print).
- [10] M.S. Uddin, C. Hall, P. Murphy, Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants - review, Science and Technology of Advanced Materials 16 (2015) 1-24.
- [11] L.A. Dobrzański, T. Tański, L. Błažek, Heat treatment impact on the structure of die-cast magnesium alloys, Journal of Achievements in Mechanical and Materials Engineering 20 (2007) 431-434.
- [12] L.A. Dobrzański, J. Domagała-Dubiel, K. Labisz, E. Hajduczek, A. Klimpel, Effect of laser treatment on microstructure and properties of cast magnesium alloys, Journal of Achievements in Materials and Manufacturing Engineering 37/1 (2009) 57-64.
- [13] T. Tański, M. Król, L.A. Dobrzański, Sz. Malara, J. Domagała-Dubiel, Precipitation evolution and surface modification of magnesium alloys, Journal of Achievements in Materials and Manufacturing Engineering 61/2 (2013) 87-149.
- [14] J.R. Groza, Nanosintering, NanoStructured Materials 12 (1999) 987-992.
- [15] C. Suryanarayna, C.C. Koch, Nanostructured materials, in Non-Equilibrium Processing of Materials, Elsevier Science Publisher, Oxford, UK, 1999, 313-346.
- [16] R.Z. Valiev, I.P. Semenova, V.V. Latysh, H. Rack, T.C. Lowe, J. Petruzelka, L. Dluhos, D. Hrusak, J. Sochova, Nanostructured titanium for biomedical applications, Advanced Engineering Materials 10 (2009) 15-17.
- [17] K. Jurczyk, A. Miklaszewski, M.U. Jurczyk, M. Jurczyk, Development of type Ti23Mo-45S5 Bioglass nanocomposites for dental applications, Materials 8 (2015) 8032-8046.
- [18] K. Jurczyk, K. Jurczyk, M.M. Kubicka, M. Ratajczak, M.U. Jurczyk, K. Niespodziana, D.M. Nowak, M. Gajecka, M. Jurczyk, Antibacterial activity of nanostructured Ti-45S5 Bioglas-Ag composite against Streptococcus mutans and Staphylococcus aureus, Transactions of Nonferrous Metals Society of China 26 (2016) 118-125.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d62daf4-d44b-42b8-8c51-d0456d84878f