Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Very high-resolution modelling of the northeastern Baltic Proper shows that preferentially elongated along the flow, submesoscale inhomogeneities of hydrodynamic fields or stripes of the order of 10–20 km in length and 1 km in width, are typical for summer season both in surface mixed layer and for interior layers which are not directly exposed to atmospheric forcing. In surface layer, the presence of stripes is supported by the remote sensing imagery and their vertical extension is comparable with the mixed layer depth (approx. 5–8 m). In the interior layers, the vertical extension of stripes is considerably larger (approx. 10–50 m) and their slopes exceed the isopycnal slope. Four competitive mechanisms of formation of the mesoscale striped texture are considered: stirring of large-scale inhomogeneities by the eddy field, the classic, inviscid adiabatic fluid symmetric instability, the McIntyre instability, and the strain-induced frontogenesis. Based on the instability criteria and the growth rates and geometry of the disturbances, the classic symmetric instability and the strain-induced frontogenesis are probably responsible for the formation of submesoscale striped texture in the surface layer, while in the interior layers, the strain-induced frontogenesis and hypothetically the McIntyre instability can be essential. Stirring of large-scale inhomogeneities by the eddy field could be responsible for formation of striped texture in a passive tracer concentration and in temperature and salinity in the presence of thermohaline gradients on isopycnic surfaces (thermoclinicity), but it does not imply formation of stripes in dynamically active tracers, such as vertical vorticity, horizontal gradients of buoyancy, etc.
Czasopismo
Rocznik
Tom
Strony
1--21
Opis fizyczny
Bibliogr. 73 poz., map., rys., tab., wykr.
Twórcy
autor
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
autor
- Tallinn University of Technology, Tallinn, Estonia
autor
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
Bibliografia
- 1. Bachman, S.D., Fox-Kemper, B., Taylor, J.R., Thomas, L.N., 2017. Parameterization of frontal symmetric instabilities. I: Theory for resolved fronts. Ocean Model. 109, 72-95. https://doi.org/10.1016/j.ocemod.2016.12.003
- 2. Barkan, R., Molemaker, M.J., Srinivasan, K., McWilliams, J.C., D’Asaro, E.A., 2019. The role of horizontal divergence in sub-mesoscale frontogenesis. J. Phys. Oceanogr. 49, 1593-1618. https://doi.org/10.1175/JPO-D-18-0162.1
- 3. Brannigan, L., Marshall, D.P., Garabato, A.C.N., Nurser, A.J.G., 2017. Submesoscale instabilities in mesoscale eddies. J. Phys. Oceanogr. 47, 3061-3085. https://doi.org/10.1175/JPO-D-16-0178.1
- 4. Burchard, H., Bolding, K., 2001. Comparative Analysis of Four Second-Moment Turbulence Closure Models for the Oceanic Mixed Layer. J. Phys. Oceanogr. 31, 1943-1968. https://doi.org/10.1175/1520-0485(2001)031〈1943:CAOFSM〉2.0.CO;2
- 5. Burchard, H., Bolding, K., 2002. GETM - a general estuarine transport model. Scientific documentation, Technical report EUR 20253 en. In: Tech. rep., European Commission. Ispra, Italy.
- 6. Canuto, V.M., Howard, A., Cheng, Y., Dubovikov, M.S., 2001. Ocean Turbulence. Part I: One-Point Closure Model-Momentum and Heat Vertical Diffusivities. J. Phys. Oceanogr. 31, 1413-1426. https://doi.org/10.1175/1520-0485(2001)031〈1413:OTPIOP〉2.0.CO;2
- 7. Capet, X., McWilliams, J.C., Molemaker, M.J., Shchepetkin, A.F., 2008. Mesoscale to Submesoscale Transition in the California Current System. Part II: Frontal Processes. J. Phys. Oceanogr. 38 (1), 44-64. https://doi.org/10.1175/2007JPO3672.1
- 8. Choi, J., Bracco, A., Barkan, R., Shchepetkin, A.F., McWilliams, J.C., Molemaker, J.M., 2017. Submesoscale dynamics in the Northern Gulf of Mexico. Part III: La-grangian implications. J. Phys. Oceanogr. 47, 2361-2376. https://doi.org/10.1175/JPO-D-17-0036.1
- 9. Chrysagi, E., Umlauf, L., Holterrmann, P., Klingbeil, K., 2021. High-resolution simulations of submesocale processes in the Baltic Sea. J. Geophys. Res. Oceans 126, e2020JC016411. https://doi.org/10.1029/2020JC016411
- 10. D’Asaro, E.A., Shcherbina, A.Y., Klymak, J.M., Molemaker, J., Novelli, G., Guigand, C.M., Haza, A.C., Haus, B.K., Ryan, E.H., Jacobs, G.A., Huntley, H.S., Laxague, N.J.M., Chen, S., Judt, F., McWilliams, J.C., Barkan, R., Kirwan Jr., A.D., Poje, A.C., Özgökmen, T.M., 2018. Ocean convergence and the dispersion of flotsam. Proc. Nat’l Acad. Sci. USA 115, 1162-1167. https://doi.org/10.1073/pnas.1802701115
- 11. Finni, T., Kononen, K., Olsonen, R., Wallström, K., 2001. The history of cyanobacteria blooms in the Baltic Sea. Ambio 30 (4-5), 172-178
- 12. Flather, R.A., 1994. A storm surge prediction model for the northern Bay of Bengal with application to the cyclone disaster in April 1991. J. Phys. Oceanogr. 24, 172-190. https://doi.org/10.1175/1520-0485(1994)024〈0172:ASSPMF〉2.0.CO;2
- 13. Garrett, C., MacCready, P., Rhines, P., 1993. Arrested Ekman layers: Rotating stratified flow near a sloping boundary. Annu. Rev. Fluid Mech. 25, 291-323.
- 14. Giudici, A., Suara, K.A., Soomere, T., Brown, R., 2021. Tracking areas with increased likelihood of surface particle aggregation in the Gulf of Finland: A first look at persistent La-grangian Coherent Structures (LCS). J. Mar. Syst. 217, 103514. https://doi.org/10.1016/j.jmarsys.2021.103514
- 15. Gräwe, U., Holtermann, P., Klingbeil, K., Burchard, H., 2015. Advantages of vertically adaptive coordinates in numerical models of stratified shelf seas. Ocean Model. 92, 56-68.
- 16. Gula, J., Molemaker, M.J., McWilliams, J.C., 2014. Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr. 44, 2617-2643. https://doi.org/10.1175/JPO-D-14-0029.1
- 17. Gula, J., Molemaker, M.J., McWilliams, J.C., 2016. Submesoscale dynamics of a Gulf Stream frontal eddy in the South Atlantic Bight. J. Phys. Oceanogr. 46, 305-325. https://doi.org/10.1175/JPO-D-14-0258.1
- 18. Haine, T.W., Marshall, J., 1998. Gravitational, symmetric, and baro-clinic instability of the ocean mixed layer. J. Phys. Oceanogr. 28 (4), 634-658. https://doi.org/10.1175/1520-0485(1998)028〈0634:GSABIO〉2.0.CO;2
- 19. Hofmeister, R., Burchard, H., Beckers, J-M., 2010. Non-uniform adaptive vertical grids for 3D numerical ocean models. Ocean Model. 33 (1-2), 70-86. https://doi.org/10.1016/j.ocemod.2009.12.003
- 20. Hoskins, B.J., 1974. The role of potential vorticity in symmetric stability and instability. Q. J. R. Met. Soc. 100, 480-482
- 21. Hoskins, B.J., 1982. The mathematical theory of frontogenesis. Annu. Rev. Fluid Mech. 82, 131-151. https://doi.org/10.1146/annurev.fl.14.010182.001023
- 22. Hoskins, B.J., Bretherton, F.P., 1972. Atmospheric frontogenesis models: mathematical formulation and solution. J. Atmos. Sci. 29, 11-37. https://doi.org/10.1175/1520-0469(1972)029〈0011:AFMMA〉2.0.CO;2
- 23. Jing, Z., Fox-Kemper, B., Cao, H., Zheng, R., Du, Y., 2021. Sub-mesoscale fronts and their dynamical processes associated with symmetric instability in the Northwest Pacific Subtropical Ocean. J. Phys. Oceanogr. 51, 83-100. https://doi.org/10.1175/JPO-D-20-0076.1
- 24. Johansson, J., 2018. Total and regional runoff to the Baltic Sea, HELCOM Baltic Sea Environment Fact Sheets. On-line. 20.12.2018. http://www.helcom.fi/baltic-sea-trends/environment-fact-sheets/
- 25. Kalda, J., Soomere, T., Giudici, A., 2014. On the finite-time compressibility of the surface currents in the Gulf of Finland, the Baltic Sea. J. Mar. Syst. 129, 56-65. https://doi.org/10.1016/j.jmarsys.2012.08.010
- 26. Karimova, S.S., Lavrova, O.Yu., Solov’ev, D.M., 2012. Observation of Eddy Structures in the Baltic Sea with the Use of Radiolocation and Radiometric Satellite Data. Izvestiya, Atmos. Ocean. Phys. 48 (9), 1006-1013. https://doi.org/10.1134/S0001433812090071
- 27. Klingbeil, K., Mohammadi-Aragh, M., Gräwe, U., Burchard, H., 2014. Quantification of spurious dissipation and mixing - discrete variance decay in a finite-volume Framework. Ocean Model. 81, 49-64. https://doi.org/10.1016/j.ocemod.2014.06.001
- 28. Klingbeil, K., Lemarié, F., Debreu, L., Burchard, H., 2018. The numerics of hydrostatic structured-grid coastal ocean models: State of the art and future perspectives. Ocean Model. 125, 80-105. https://doi.org/10.1016/j.ocemod.2018.01.007
- 29. Krauss, W., Brügge, B., 1991. Wind-produced water exchange between the deep basins of the Baltic Sea. J. Phys. Oceanogr. 21, 373-384. https://doi.org/10.1175/1520-0485(1991)021〈0373:WPWEBT〉2.0.CO;2
- 30. Kuzmina, N.P., 1981. Non-linear numerical model of oceanic fronto-genesis. Izvestiya Akademii Nauk SSSR Fizika Atmosfery i Okeana 17 (12), 1318-1325.
- 31. Kuzmina, N.P., Rodionov, V.B., 1992. Influence of baroclinity on the formation of thermohaline intrusions in ocean frontal zones. Izv. Akad. Sci. USSR, Atmos. Ocean. Phys. 28, 804-810.
- 32. Kuzmina, N.P., Rudels, B., Stipa, T., Zhurbas, V., 2005. The structure and driving mechanisms of the Baltic intrusions. J. Phys. Oceanogr. 35, 1120-1137. https://doi.org/10.1175/JPO2749.1
- 33. Kuzmina, N.P., Zhurbas, V.M., 2000. Effects of double diffusion and turbulence on interleaving at baroclinic oceanic fronts. J. Phys. Oceanogr. 30 (12), 3025-3038. https://doi.org/10.1175/1520-0485(2000)030〈3025:EODDAT〉2.0.CO;2
- 34. Laanemets, J., Väli, G., Zhurbas, V., Elken, J., Lips, I., Lips, U.,2011. Simulation of mesoscale structures and nutrient transport during summer upwelling events in the Gulf of Finland in 2006. Boreal Environ. Res. 16 (A), 15-26.
- 35. Lappe, C., Umlauf, L., 2016. Efficient boundary mixing due to nearinertial waves in a nontidal basin: Observations from the Baltic Sea. J. Geophys. Res.- Oceans 121 (11), 8287-8304. https://doi.org/10.1002/2016JC011985
- 36. Liblik, T., Väli, G., Lips, I., Lilover, M.-J., Kikas, V., Laanemets, J.,2020. The winter stratification phenomenon and its consequences in the Gulf of Finland. Baltic Sea, Ocean Sci. 16, 1475-1490. https://doi.org/10.5194/os-16-1475-2020
- 37. Lips, U., Zhurbas, V., Skudra, M., Väli, G., 2016. A numerical study of circulation in the Gulf of Riga, Baltic Sea. Part I: Whole-basin gyres and mean currents. Cont. Shelf Res. 112, 1-13. https://doi.org/10.1016/j.csr.2015.11.008
- 38. Männik, A., Merilain, M., 2007. Verification of different precipitation forecasts during extended winter-season in Estonia. HIRLAM Newsletter 52, 65-70.
- 39. MacVean, M.K., Woods, J.D., 1980. Redistribution of scalars during upper oceanfrontogenesis. Quart. J. Roy. Met. Soc. 106, 293-311.
- 40. Martinsen, E.A., Engedahl, H., 1987. Implementation and testing of a lateral boundary scheme as an open boundary condition in a barotropic ocean model. Coast. Eng. 11, 603-627. https://doi.org/10.1016/0378-3839(87)90028-7
- 41. May, B.D., Kelley, D.E., 1997. Effect of baroclinicity on double-diffusive interleaving. J. Phys. Oceanogr. 27, 1997-2008. https://doi.org/10.1175/1520-0485(1997)027〈1997:EOBODD〉2.0.CO;2
- 42. McIntyre, E., 1970. Diffusive destabilization of the baroclinic circular vortex. Geophys. Fluid Dynam. 1, 19-57.
- 43. McWilliams, J.C., 2016. Submesoscale currents in the ocean. Proc. Royal Soc. A 72, 20160117. https://doi.org/10.1098/rspa.2016.0117
- 44. Munk, W., 2001. Spirals on the sea. Scientia Mar 65 (S2), 193-198. https://doi.org/10.3989/scimar.2001.65s2193
- 45. Munk, W., Armi, L., Fischer, K., Zachariasen, F., 2000. Spirals on the sea. Proc. R. Soc. Lond A456, 1217-1280.
- 46. Onken, R., Baschek, B., Angel-Benavides, I.M., 2020. Very high-resolution modelling of submesoscale turbulent patterns andprocesses in the Baltic Sea. Ocean Sci. 16, 657-684. https://doi.org/10.5194/os-16-657
- 47. Ooyama, K., 1966. On the stability of the baroclinic circular vortex: a sufficient criterion for instability. J. Atmos. Sci.23, 43-53. https://doi.org/10.1175/1520-0469(1966)023〈0043:OTSOTB〉2.0.CO;2
- 48. Ou, H.W., 1984. Geostrophic adjustment: a mechanism for fronto-genesis. J. Phys. Oceanogr. 14, 994-1000. https://doi.org/10.1175/1520-0485(1984)014〈0994:GAAMFF〉2.0.CO;2
- 49. Qiu, B., Chen, S., Klein, P., Sasaki, H., Sasai, Y., 2014. Seasonal mesoscale and submesoscale eddy variability along the Nort Pacific Subtropical Countercurrent. J. Phys. Oceanogr. 44, 3079-3098. https://doi.org/10.1175/JPO-D-14-0071.1
- 50. Ruddick, B., 1992. Intrusive mixing in a Mediterranean salt lens -intrusion slopes and dynamical mechanisms. J. Phys. Oceanogr. 22 (11), 1274-1285. https://doi.org/10.1175/1520-0485(1992)022lt;1274:IMIAMS〉2.0.CO;2
- 51. Shadden, S.C., Lekien, F., Marsden, J.E., 2005. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D 212, 271-304. https://doi.org/10.1016/j.physd.2005.10.007
- 52. Schubert, R., Gula, J., Greatbatch, R.J., Baschek, B., Biastoch, A.,2020. The submesoscale kinetic energy cascade: Mesoscale absorption of submesoscale mixed layer eddies and frontal down-scale fluxes. J. Phys. Oceanogr. 50, 2573-2589. https://doi.org/10.1175/JPO-D-19-0311.1
- 53. Smith, K.S., Ferrari, R., 2009. The production and dissipation of compensated thermohaline variance by mesoscale stirring. J. Phys. Oceanogr. 39, 2477-2501. https://doi.org/10.1175/2009JPO4103.1
- 54. Stern, M.E., 1967. Lateral mixing of water masses. Deep-Sea Res. 14, 747-753.
- 55. Stone, P.H., 1966. On non-geostrophic baroclinic stability. J. Atmos. Sci. 23 (4), 390-400.
- 56. Taylor, J.R., Ferrari, R., 2009. On the equilibration of a symmetrically unstable front via a secondary shear instability. J. Fluid Mech. 622, 103-113. https://doi.org/10.1017/S0022112008005272
- 57. Thomas, L.N., 2005. Destruction of potential vorticity by winds. J. Phys. Oceanogr. 35, 2457-2466. https://doi.org/10.1175/JPO2830.1
- 58. Thomas, L.N., Taylor, J.R., D’Asaro, E.A., Lee, C.M., Klymak, J.M.,Shcherbina, A., 2016. Symmetric instability, inertial oscillations, and turbulence at the Gulf Stream front. J. Phys. Oceanogr. 46 (1), 197-217. https://doi.org/10.1175/JPO-D-15-0008.1
- 59. Thomas, L.N., Taylor, J.R., Ferrari, R., Joyce, T.M., 2013. Symmetric instability in the Gulf Stream. Deep-Sea Res. Part II 91, 96-110. https://doi.org/10.1016/j.dsr2.2013.02.025
- 60. Umlauf, L., Burchard, H., 2005. Second-order turbulence closure models for geophysical boundary layers. A review of recent work. Cont. Shelf Res. 25 (7-8), 795-827. https://doi.org/10.1016/j.csr.2004.08.004
- 61. Umlauf, L., Arneborg, L., 2009. Dynamics of rotating shallow gravity currents passing through a channel. Part I: Observation of transverse structure. J. Phys. Oceanogr. 39, 2385-2401. https://doi.org/10.1175/2009JPO4159.1
- 62. Väli, G., Zhurbas, V., 2021. Seasonality of submesoscale coherent vortices in the northern Baltic Proper: A model study. Fudamentalnaya i Prikladnaya Gidrofisika 14 (3) (in press).
- 63. Väli, G., Zhurbas, V.M., Laanemets, J., Lips, U., 2018. Clustering of floating particles due to submesoscale dynamics: a simulation study for the Gulf of Finland, Fundamentalnaya i prikladnaya gidrofizika 11(2), 21-35. https://doi.org/10.7868/S2073667318020028
- 64. Väli, G., Zhurbas, V., Lips, U., Laanemets, J., 2017. Submesoscale structures related to upwelling events in the Gulf of Finland, Baltic Sea (numerical experiments). J. Mar. Syst. 171 (SI), 31-42. https://doi.org/10.1016/j.jmarsys.2016.06.010
- 65. Vankevich, R.E., Sofina, E.V., Eremina, T.E., Ryabchenko, V.A.,Molchanov, M.S., Isaev, A.V., 2016. Effects of lateral processes on the seasonal water stratification of the Gulf of Finland: 3-D NEMO-based model study. Ocean Sci. 12, 987-1001. https://doi.org/10.5194/os-12-987-2016
- 66. Villermaux, E., 2019. Mixing versus stirring. Annu. Rev.Fluid Mech. 51, 245-273. https://doi.org/10.1146/annurev-fluid-010518-040306
- 67. Vortmeyer-Kley, R., Holtermann, P.L., Feudel, U., Gräwe, U., 2019. Comparing Eulerian and Lagrangian eddy census for a tide-less, semi-enclosed basin, the Baltic Sea, Ocean Dyn. 69, 701-717. https://doi.org/10.1007/s10236-019-01269-z
- 68. Yu, X., Garabato, A.C.N., Martin, A.P., Buckingham, C.E., Brannigan, L., 2019. An annual cycle of submesoscale vertical flow and restratification in the upper ocean. J. Phys. Oceanogr. 49, 1439-1461. https://doi.org/10.1175/JPO-D-18-0253.1
- 69. Zhurbas, V., Elken, J., Paka, V., Piechura, J., Väli, G., Chubarenko, I., Golenko, N., Shchuka, S., 2012. Structure of unsteady overflow in the Słupsk Furrow of the Baltic Sea. J. Geophys. Res. Oceans 117, C04027. https://doi.org/10.1029/2011JC007284
- 70. Zhurbas, V., Laanemets, J., Vahtera, E., 2008. Modeling of the mesoscale structure of coupled upwelling/downwelling events and the related input of nutrients to the upper mixed layer in the Gulf of Finland, Baltic Sea. J. Geophys. Res. Oceans 113, C05004. https://doi.org/10.1029/2007JC004280
- 71. Zhurbas, V., Väli, G., Golenko, M., Paka, V., 2018. Variability of bottom friction velocity along the inflow water pathway in the Baltic Sea. J. Mar. Syst. 184, 50-58. https://doi.org/10.1016/j.jmarsys.2018.04.008
- 72. Zhurbas, V., Väli, G., Kostianoy, A., Lavrova, O., 2019a. Hindcast of the mesoscale eddy field in the Southeastern Baltic Sea: Model output vs satellite imagery. Russian J. Earth Sci. 19 (4), 1-17. https://doi.org/10.2205/2019ES000672
- 73. Zhurbas, V., Väli, G., Kuzmina, N., 2019b. Rotation of floating particles in submesoscale cyclonic and anticyclonic eddies: a model study for the southeastern Baltic Sea. Ocean Sci. 15, 1691-1705. https://doi.org/10.5194/os-15-1691-2019
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d60cd57-3368-4c53-ba2f-9226d0721d2a