PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Examination of the Eutectic Modifying Effect of Sr on an Al-Si-Mg-Cu Alloy Using Various Technological Parameters

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the aid of eutectic modification treatment, the precipitation of coarse lamellar eutectic silicon can be suspended during the solidification of aluminum-silicon alloys, thereby the formation of fine-grained, fibrous eutectic Si can be promoted by the addition of small amounts of modifying elements, such as Sr, to the liquid alloy. The effectiveness of this technique is, however, highly dependent on many technological factors, and the degree of modification can be lowered during the various stages of melt preparation due to the oxidation of the Sr-content of the melt. During our research, we investigated the effect of rotary degassing melt treatments coupled with the addition of three different fluxes on the degree of modification of an Al-Si-Mg-Cu casting alloy. It was also studied, that whether additional Sr alloying made before and during the melt treatments can compensate the Sr fading with time. The degree of eutectic modification was characterized by thermal analysis (TA) and the microscopic investigation of TA specimens. It was found, that by using one of the three fluxes, and by adding Sr master alloy rods before the melt treatments, better modification levels could be achieved. It was also found that the measurement of Sr-concentration by optical emission spectroscopy alone cannot be used for controlling the level of eutectic modification.
Rocznik
Strony
79--84
Opis fizyczny
Bibliogr. 26 poz., fot., rys., tab.
Twórcy
autor
  • University of Miskolc, Faculty of Materials Science and Engineering, Miskolc-Egyetemváros, Hungary
autor
  • University of Miskolc, Faculty of Materials Science and Engineering, Miskolc-Egyetemváros, Hungary
  • University of Miskolc, Faculty of Materials Science and Engineering, Miskolc-Egyetemváros, Hungary
autor
  • University of Miskolc, Faculty of Materials Science and Engineering, Miskolc-Egyetemváros, Hungary
Bibliografia
  • [1] Javidani, M. & Larouche, D. (2014). Application of cast Al-Si alloys in internal combustion engine components. International Materials Reviews. 59(3), 132-158. DOI: 10.1179/1743280413y.0000000027.
  • [2] Ye, H. (2003). An Overview of the development of Al-Si-alloy based material for engine applications. Journal of Materials Engineering and Performance. 12(3), 288-297. DOI: 10.1361/105994903770343132.
  • [3] Robles-Hernandez, F.C., Ramírez, J.M.H., Mackay, R. (2017). Al-Si Alloys. Springer International Publishing AG, 161-169, DOI: 10.1007/978-3- 319-58380-8.
  • [4] Polmear, I., et al. (2017). Light Alloys. (5th ed.) Elsevier Ltd. 7-11. DOI: 10.1016/B978-0-08-099431-4.00001-4.
  • [5] Sigworth, G.K. (2008). The modification of Al-Si casting alloys: important practical and theoretical aspects. International Journal of Metalcasting. 2(2), 19-40. DOI: 10.1007/BF03355425.
  • [6] Li, J.H., et al. (2015). Nucleation and growth of eutectic Si in Al-Si alloys with Na addition. Metallurgical and Materials Transactions A. 46(3), 1300-1311. DOI: 10.1007/s11661-014-2702-6.
  • [7] Timpel, M., et al. (2012). The role of strontium in modifying aluminium-silicon alloys. Acta Materialia. 60(9), 3920-3928. DOI: 1016/j.actamat.2012.03.031.
  • [8] Kilinc, E., Akbalik, S. & Birol, Y. (2018). Optimization of the strontium modification process in gravity permanent mould tilt cast AlSi6Cu4 cylinder heads. International Journal of Metalcasting. 12(2), 266-274. DOI: 10.1007/s40962-017-0158-3.
  • [9] Zhang, W., et al. (2019). The relationship between residual amount of Sr and morphology of eutectic Si phase in A356 alloy. Materials. 12(19), 3222. DOI: 10.3390/ma12193222.
  • [10] Tokár, M., Fegyverneki, G. & Mertinger, V. (2014). Analysis of the antimony and strontium cross-effects in Al-Si foundry alloys. Materials Science Forum. 790-791, 464-469. DOI: 10.4028/www.scientific.net/MSF.790-791.464
  • [11] Bolibruchová, D. & Bruna, M. (2017). Antimony influence on shape of eutectic silicium in Al-Si based alloys. Archives of Foundry Engineering. 17(4), 31-34. DOI: 10.1515/afe-2017-0126.
  • [12] Knuutinen, A., et al. (2001). Modification of Al-Si alloys with Ba, Ca, Y and Yb. Journal of Light Metals. 1(4), 229-240. DOI: 10.1016/S1471-5317(02)00004-4.
  • [13] Mahmoud, M.G., Samuel, A.M., Doty, H.W. & Samuel, F. H. (2020). Effect of the addition of La and Ce on the solidification behavior of Al–Cu and Al–Si–Cu cast alloys. International Journal of Metalcasting. 14(1), 191-206. DOI: 10.1007/s40962-019-00351-y.
  • [14] Samuel, A.M., et al. (2017). New method of eutectic silicon modification in cast Al-Si alloys. International Journal of Metalcasting. 11(3), 475-493. DOI: 10.1007/s40962-016-0089-4.
  • [15] Vandersluis, E., Prabaharan, N. & Ravindran, C. (2019). Solidification rate and the partial modification of 319 aluminum alloy with strontium. International Journal of Metalcasting. 14(1), 37-46. DOI: 10.1007/s40962-019-00329-w.
  • [16] Samuel, A.M., et al. (2017). Influence of oxides on porosity formation in Sr-treated alloys. International Journal of Metalcasting. 11(4), 729-742. DOI: 10.1007/s40962-016-0118-3.
  • [17] Miresmaeili, S.M., et al. (2005). Precipitation of Sr-rich intermetallic particles and their influence on pore formation in Sr-modified A356 alloy. Metallurgical and Materials Transactions A. 36(9), 2341-2349. DOI: 10.1007/s11661-005-0106-3.
  • [18] Wang, Q., Hao, Q. & Yu, W. (2019). Effect of strontium modification on porosity formation in A356 alloy. International Journal of Metalcasting. 13(4), 944-952. DOI: 10.1007/s40962-018-00300-1.
  • [19] Bartar Esfahani, H., Doostmohammadi, H. & Raiszadeh, R. (2016). Decrease in the rate of diffusion of hydrogen through layers of bifilm defects in Al melt in the presence of Sr. International Journal of Cast Metals Research. 29(3), 179-185. DOI: 10.1080/13640461.2015.1125645.
  • [20] Eguskiza, S., et al. (2015). Study of strontium fading in Al-Si-Mg and Al-Si-Mg-Cu alloy by thermal analysis. International Journal of Metalcasting. 9(3), 43-50. DOI: 10.1007/BF03355622.
  • [21] Gyarmati, G., et al. (2019). The melt cleaning efficiency of different fluxes and their effect on the eutectic modification level of AlSi7MgCu alloy. Livarski Vestnik, 66(2), 70–87.
  • [22] Djurdjevic, M., Jiang, H. & Sokolowski, J. (2001). On-Line prediction of aluminum-silicon eutectic modification level using thermal analysis. Materials Characterization. 46(1), 31-38. DOI: 10.1016/S1044-5803(00)00090-5.
  • [23] Li, C., et al. (2017). Mechanism to remove oxide inclusions from molten aluminum by solid fluxes refining method. China Foundry. 14(4), 233-243. DOI: 10.1007/s41230-017-7005-2.
  • [24] Gallo, R. (2017). “I Have inclusions! Get me the cheapest and best flux for cleaning my melt” - Is this the best driven, cost saving approach by a foundry? AFS Transactions. 125, 97-110.
  • [25] Utigard, T.A., et al. (1998). The properties and uses of fluxes in molten aluminum processing. JOM. 50(11), 38-43. DOI: 10.1007/s11837-998-0285-7.
  • [26] Ambrová, M., et al. (2005). Chemical reactions of sulphur species in cryolite-based melts. Chemical Papers. 59, 235-239.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d5e70f1-8993-4677-a8d8-eaa78b410323
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.