PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Solution of one-dimensional space- and time-fractional advection–dispersion equation by homotopy perturbation method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study develops solution of one-dimensional space–time fractional advection–dispersion equation (FADE). Various forms of dispersion and velocity profiles (i.e. space dependent and both space–time dependent) are considered throughout the study. Homotopy perturbation method (HPM) is used to solve the problem semi-analytically. The advantage of HPM is that it does not require much information about the boundary of the aquifer. The initial condition may be measured for an aquifer, but sometimes it is very difficult to specify the boundary conditions. The FADE is employed for modeling the fate of contaminants in both homogeneous and heterogeneous porous formations subject to an increasing spatially dependent source condition. It is found that the contaminant concentration changes with the order of FADE as fractional-order derivative contains the memory of the system, i.e. how the system changes from one integer order to another integer order. FADEs are used to model the non-local system, hence this study helps understand the physical meaning of parameters involved in the velocity and dispersion.
Słowa kluczowe
Czasopismo
Rocznik
Strony
353--361
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
  • Department of Applied Mathematics, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
  • Department of Applied Mathematics, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
Bibliografia
  • 1. Batu V (2006) Applied flow and solute transport modeling in aquifers: Fundamental principles and analytical and numerical methods. CRC, Boca Raton, FL
  • 2. Benson DA, Wheatcraft SW, Meerschaert MM (2000) Application of a fractional advection–dispersion equation. Water Resour Res 36(6):1403–1412
  • 3. Chen JS, Liu CW (2011) Generalized analytical solution for advection–dispersion equation in finite spatial domain with arbitrary time-dependent inlet boundary condition. Hydrol Earth Syst Sci 15:2471–2479
  • 4. He JH (2005) Application of homotopy perturbation method to nonlinear wave equations. Chaos Soliton Fractals 26:695–700
  • 5. Huang Q, Huang G, Zhan H (2008) A finite element solution for the fractional advection dispersion equation. Adv Water Resour 31:1578–1589
  • 6. Li C, Zhaoa Z, Chenb Y (2011) Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput Math Appl 62:855–875
  • 7. Liu F, Anh V, Turner I (2004) Numerical solution of the space fractional Fokker–Planck equation. J Comput Appl Math 166(1):209–219
  • 8. Marinca V, Herişanu N, Bota C, Marinca B (2009) An optimal homotopy asymptotic method applied to the steady flow of a fourth-grade fluid past a porous plate. Appl Math Lett 22(2):245–251
  • 9. Meerschaert MM, Tadjeran C (2004) Finite difference approximations for fractional advection dispersion flow equations. J Comput Appl Math 172:65–77
  • 10. Meerschaert MM, Scheffler HP, Tadjeran C (2006) Finite difference methods for two-dimensional fractional dispersion equation. J Comput Phys 211(1):249–261
  • 11. Momani S, Odibat Z (2007) Homotopy perturbation method for non linear partial differential equations of fractional order. Phys Lett A 365:345–350
  • 12. Murio DA (2008) Implicit finite difference approximation for time fractional diffusion equations. Comput Math Appl 56:1138–1145
  • 13. Pandey RK, Singh OP, Baranwal VK (2011) An analytic algorithm for the space–time fractional advection–dispersion equation. Comput Phys Commun 182(5):1134–1144
  • 14. Pandey RK, Singh OP, Baranwal VK, Tripathi MP (2012) An analytic solution for the space–time fractional advection–dispersion equation using the optimal homotopy asymptotic method. Comput Phys Commun 183(10):2098–2106
  • 15. Paradisi P, Cesari R, Mainardi F, Tampieri F (2001) The fractional Fick’s law for non-local transport processes. Phys A 293(1):130–142
  • 16. Roop JP (2008) Numerical approximation of a one-dimensional space fractional advection dispersion equation with boundary layer. Comput Math Appl 56:1808–1819
  • 17. Sander GC, Braddock RD (2005) Analytical solutions to the transient, unsaturated transport of water and contaminants through horizontal porous media. Adv Water Resour 28:1102–1111
  • 18. Schumer R, Benson DA, Meerschaert MM, Wheatcraft SW (2001) Eulerian derivation of the fractional advection–dispersion equation. J Contam Hydrol 48(1):69–88
  • 19. Schumer R, Meerschaert MM, Baeumer B (2009) Fractional advection–dispersion equations for modeling transport at the earth surface. J Geophys Res Earth Surf 114:F00A07, 1–15. doi:10.1029/2008JF001246
  • 20. Singh MK, Mahato NK, Singh P (2008) Longitudinal dispersion with time dependent source concentration in semi-infinite aquifer. J Earth Syst Sci 117(6):945–949
  • 21. Smedt FD (2006) Analytical solution for transport of decaying solutes in rivers with transient storage. J Hydrol 330(3–4):672–680
  • 22. Srinivasan V, Clement TP (2008) An analytical solution for sequentially coupled one-dimensional reactive transport problems Part-I: mathematical derivations. Water Resour Res 31(2):203–218
  • 23. Zhang Y, Benson DA, Meerschaert MM, LaBolle EM (2007) Space-fractional advection–dispersion equations with variable parameters: diverse formulas, numerical solutions, and application to the macrodispersion experiment site data. Water Resour Res 43(5):W05439, 1–16. doi:10.1029/2006WR004912
  • 24. Zheng YY, Li CP, Zhoa ZG (2010) A note on the finite element method for the space fractional advection dispersion equation. Comput Math Appl 59(5):1718–1726
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d5dcaae-2d4c-429d-bd71-15de12a18d23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.