Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The publication cancers one of problems related with safety in mining industry -the marking of escape routes in mining excavations. A review of literature on the subject and applicable legal regulations and standards, and authors’ study on the subject covering use of color-lighted signs created by them are presented. Design/methodology/approach: Literature studies were conducted: 1) to identify methods and findings in researches on marking of escape routes, described in scientific publications; 2) to define the requirements set out in legal acts and standards. The field study of the marking of escape routes was carried out in a training mine gallery in which there are conditions reflecting the real ones in underground mining excavations. The observations and questionnaire research were conducted during a training of a group of 20 professional mine rescuers. The following variables were set for the experiment: distance (5, 10 and 15 m), color (white, green, blue, red), shape (square, arrow). Findings: The article presents the results of pilot test in the field of the marking of escape routes in mine excavations. Different colors and shapes of the signs, and different distances of observation were taken into account. White color was found best to assure signs detectability but least appropriate if shape identification is required. Red and green colors were indicated as recommended if the shape identification is the evaluation criterion. Research limitations/implications: The research was dedicated to the underground mining industry, but can be adapted to other working sites where the evacuation takes place in similar conditions (lack of visibility and smoke). Practical implications: The research revealed among others that: 1) Polish regulations do not imply detailed rules as regards signage of escape routes in underground coal mines, which gives floor for development of new concepts and designs, 2) it is possible to propose color-lighted signs for effective marking escape routes in underground coal mines. Originality/value: The publication contains the original results of pilot test in the field of the marking of escape routes in mining excavations, and they can be addressed to persons managing mining plants and managers of mining supervision authorities.
Rocznik
Tom
Strony
129--152
Opis fizyczny
Bibliogr. 64 poz.
Twórcy
autor
- Silesian University of Technology
autor
- Silesian University of Technology
autor
- Silesian University of Technology
autor
- KOMAG, Institute of Mining Technology
autor
- KOMAG, Institute of Mining Technology
Bibliografia
- 1. Badura, H., Grodzicka A., Musioł, D. (2017). Study of the ‘lifeline’ as the measure allowing for safe self-rescue of miners in conditions of lack of visibility caused by underground fire. IOP Conference Series: Materials Science and Engineering, 268, 012015, doi:10.1088/1757-899X/268/1/012015.
- 2. Badura, H., Musioł, M. (2015). Propozycje oznakowania dróg ucieczkowych w kopalniach węgla kamiennego (Proposals for Marking Escape Routes in Coal Mines). Systemy Wspomagania w Inżynierii Produkcji, 3(12), 17-28. Retrieved from: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-d9ab0155-60f1-4b89-8e32-ecab128e497a/c/badura_SWIP_2015_3.pdf.
- 3. Bae, Y.-H., Son, J.-Y., Oh, R.-S., Lee, H.-K., Lee, Y.-H., Hong, W.-H., Choi, J.-H. (2021). Optimal Installation Location of Escape Route Signs at T-Type Intersections. Sustainability, 13, 7903, doi.org/10.3390/su13147903.
- 4. CAB Lifeline. Retrieved from: https://www.cabproducts.com/lifeline-accessories/.
- 5. Chan, A.H.S., Ng, A.W.Y. (2012). The Guessing of Mine Safety Signs Meaning: Effects of User Factors and Cognitive Sign Features. International Journal of Occupational Safety and Ergonomics, 18, 195-208, doi:10.1080/10803548.2012.11076928.
- 6. Chen, N., Zhao, M., Gao, K., Zhao, J. (2020). The Physiological Experimental Study on the Effect of Different Color of Safety Signs on a Virtual Subway Fire Escape—An Exploratory Case Study of Zijing Mountain Subway Station. International Journal of Environmental Research and Public Health, 17, 5903, https://doi:10.3390/ijerph17165903.
- 7. Code of Federal Regulations. Title 30, Chapter 1—Mine Safety and Health Administration, Department of Labor, https://www.ecfr.gov/current/title-30/chapter-I.
- 8. Cosma, G., Ronchi, E., Nilsson, D. (2016). Way-finding lighting systems for rail tunnel evacuation: A virtual reality experiment with Oculus Rift. Journal of Transportation Safety & Security, 8, 101-117, doi:10.1080/19439962.2015.1046621.
- 9. Council Directive 92/104/EEC of 3 December 1992 on the minimum requirements for improving the safety and health protection of workers in surface and underground mineralextracting industries (twelfth individual Directive within the meaning of Article 16 (1) of Directive 89/391/EEC).
- 10. Council Directive 92/58/EEC of 24 June 1992 on the minimum requirements for the provision of safety and/or health signs at work (ninth individual Directive within the meaning of Article 16 (1) of Directive 89/391/EEC).
- 11. Ding, N., Ma, Y., Fan, Z., Shi, J. (2022). Test the Effectiveness of Building Safety Guidance Signs in a T-junction Corridor based on Eye Movement Data. Journal of Safety Science and Resilience, 4(2), 123-129, doi: 10.1016/j.jnlssr.2022.11.001.
- 12. Duarte, E., Rebelo, F., Teles, J., Wogalter, M.S. (2014). Safety sign comprehension by students, adult workers and disabled persons with cerebral palsy. Safety Science, 62, 175186, doi:10.1016/j.ssci.2013.08.007.
- 13. EN ISO 7010:2020, Graphical symbols - Safety colours and safety signs - Registered safety signs.
- 14. Filippidis, L., Galea, E.R., Gwynne, S., Lawrence, P.J. (2006). Representing the Influence of Signage on Evacuation Behavior within an Evacuation Model. Journal of Fire Protection Engineering, 16, 37-73, doi:10.1177/1042391506054.
- 15. Fridolf, K., Ronchi, E., Nilsson, D., Frantzich, H. (2013). Movement speed and exit choice in smoke-filled rail tunnels. Fire Safety Journal, 59, 8-21, doi:10.1016/j.firesaf.2013.03.007.
- 16. Fu, L., Cao, S., Song, W., Fang, J. (2019). The influence of emergency signage on building evacuation behavior: An experimental study. Fire and Materials, 43(1), 22-33, doi:10.1002/fam.2665.
- 17. Fu, M., Liu, R. (2020). An approach of checking an exit sign system based on navigation graph networks. Advanced Engineering Informatics, 46, 101168, doi:10.1016/j.aei.2020.101168
- 18. Fujii, K., Sano, T., Ohmiya, Y. (2020). Influence of lit emergency signs and illuminated settings on walking speeds in smoky corridors. Fire Safety Journal, 120, 103026, doi: 10.1016/j.firesaf.2020.103026.
- 19. Gaab, S.J. (2019). Evaluation of Smart Underground Mine Evacuation Efficiency through Virtual Reality. Master of science thesis. Reno, USA: University of Nevada.
- 20. Galea, E.R., Xie H., Lawrence, P.J. (2014). Experimental and Survey Studies on the Effectiveness of Dynamic Signage Systems. Fire Safety Science, 1, 1129-1143, doi:10.3801/IAFSS.FSS.11-1129.
- 21. Galea, E.R., Xie, H., Deere, S., Cooney, D., Filippidis, L. (2016). An international survey and full-scale evacuation trial demonstrating the effectiveness of the active dynamic signage system concept. Fire and Materials, 41(5), 493-513, doi: doi.org/10.1002/fam.2414.
- 22. Grodzicka, A., Plewa, F., Krause, M., Rozmus, M. (2022), Selection of Employees for Performing Work Activities in Currently Used Ventilation Systems in Hard Coal Mining. Energies, 15(2), 408, doi: 10.3390/en15020408.
- 23. Guilei, S. (2020). Research on Location of Emergency Sign Based on Virtual Reality and Eye Tracking Technology. In: T. Ahram (Eds.), Advances in Human Factors in Wearable Technologies and Game Design (pp. 401-408). Cham, Switzerland: Springer, doi:10.1007/978-3-030-20476-1_40.
- 24. Higgins, L., Carlson, P., Miles, J., Rozyckie, S., Averso, M., Graham, D., Seip, B., Jenssen, G. (2015). NCHRP Web-Only Document 216: Emergency Exit Signs and Marking Systems for Highway Tunnels, Transportation Research Board. Retrieved from: http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_w216.pdf.
- 25. Huang, L., Gong, J., Li, W.A. (2021). Perception Model for Optimizing and Evaluating Evacuation Guidance Systems. International Journal of Geo-Information, 10, 54, doi.org/10.3390/ijgi10020054.
- 26. ISO 16069:2017, Graphical symbols - Safety signs - Safety way guidance systems (SWGS).
- 27. ISO 17724:2003, Graphical symbols - Vocabulary.
- 28. ISO 3864-1:2011, Graphical symbols - Safety colours and safety signs - Part 1: Design principles for safety signs and safety markings.
- 29. ISO 3864-3:2012, Graphical symbols - Safety colours and safety signs - Part 3: Design principles for graphical symbols for use in safety signs.
- 30. ISO 7010:2019, Graphical Symbols - Safety colours and safety signs - Registered safety signs.
- 31. Jeon, G.Y., Na, W.J., Hong, W.H., Lee, J.K. (2019). Influence of design and installation of emergency exit signs on evacuation speed. Journal of Asian Architecture and Building Engineering, 18, 104-111, doi:10.1080/13467581.2019.1599897.
- 32. Jiang, F., Ding, N., Shi, J., Fan, Z. (2022). Verify the Validity of Guidance Sign in Buildings: A New Method Based on Mixed Reality with Eye Tracking Device. Sustainability, 14, 11286, doi:10.3390/su141811286.
- 33. Jin, T. (1970). Visibility through fire smoke. Japanese Association of Fire Science and Engineering, 19(2), 1-8.
- 34. Kim, Y.-C., Baek, S.-H., Bae, Y.-H., Oh, R.-S., Choi, J.-H. (2022). Evaluation of the Effective Cognition Area (ECA) of Signage Systems with Backlighting under Smoke Conditions. Sustainability, 14, 4057, doi:10.3390/su14074057.
- 35. Kubota, J., Sano, T., Ronchi, E. (2021). Assessing the Compliance with the Direction Indicated by Emergency Evacuation Signage. Safety Science, 138, 105210, doi:10.1016/j.ssci.2021.105210.
- 36. Liu, M., Zheng, X., Cheng, Y. (2011). Determining the effective distance of emergency evacuation signs. Fire Safety Journal, 46, 364-369, doi:10.1016/j.firesaf.2011.06.002.
- 37. Martell, M., Sammarco, J., Macdonald, B., Rubinstein, E. (2020). Detectability of a selfilluminating lifeline for self-escape in smoke conditions of an underground mine. Light. Lighting Research & Technology, 52(1), 64-78, doi:10.1177/1477153519829187.
- 38. McClintock, T., Shields, T.J., Reinhardt-Rutland, A., Leslie, J. (2001). A behavioural solution to the learned irrelevance of emergency exit signage. Proceedings of the 2nd Internetional Symposium on Human Behaviour in Fire. Boston, MA, USA, 26-28 March 2001, Interscience Publications: London, UK, pp. 23-33.
- 39. Meij, R. (2020). Development of a new smart evacuation modelling technique for underground mines using Mathematical Programming. Master of Science thesis. Delft, The Netherlands: Delft University of Technology.
- 40. Nilsson, D. (2009). Exit choice in fire emergencies - Influencing choice of exit with flashing lights. Doctoral Thesis. Lund, Sweden: Department of Fire Safety Engineering and Systems Safety, Lund University.
- 41. Nilsson, D., Frantzich, H., Saunders, W. (2005). Coloured Flashing Lights to Mark Emergency Exits - Experiences from Evacuation Experiments. Fire Safety Science, 8, 569579, doi:10.3801/IAFSS.FSS.8-569.
- 42. Olander, J. (2015). Comparative Study of Dissuasive Emergency Signage. Report 5491. Lund, Sweden: Department of Fire Safety Engineering, Lund University, LUTVDG/TVBB-5491-SE.
- 43. Olander, J., Ronchi, E., Lovreglio, R., Nilsson, D. (2017). Dissuasive exit signage for building fire evacuation. Applied Ergonomics, 59, 84-93, doi:10.1016/J.APERGO.2016.08.029.
- 44. Onifade, M., Genc, B., Said, K.O., Fourie, M., Akinseye, P.O. (2022). Overview of mine rescue approaches for underground coal fires: A South African perspective. Journal of the Southern African Institute of Mining and Metallurgy, 122(5), 213-226, doi:10.17159/2411-9717/1738/2022.
- 45. PN-EN ISO 7010:2020, Symbole graficzne - Barwy bezpieczeństwa i znaki bezpieczeństwa - Zarejestrowane znaki bezpieczeństwa.
- 46. PN-N-01255:1992, Barwy bezpieczeństwa i znaki bezpieczeństwa.
- 47. PN-N-01256, seria norm obejmująca: PN-N-01256-01:1992, Znaki bezpieczeństwa -Ochrona przeciwpożarowa; PN-N-01256-02:1992, Znaki bezpieczeństwa - Ewakuacja; PN-N-01256-03:1993, Znaki bezpieczeństwa - Ochrona i higiena pracy; PN-N-01256-04:1997, Znaki bezpieczeństwa - Techniczne środki przeciwpożarowe; PN-N-01256-05:1998, Znaki bezpieczeństwa - Zasady umieszczania znaków bezpieczeństwa na drogach ewakuacyjnych i drogach pożarowych.
- 48. Ronchi, E., Fridolf, K., Frantzich, H., Nilsson, D., Walter, A.L., Modig, H. (2018). A tunnel evacuation experiment on movement speed and exit choice in smoke. Fire Safety Journal, 97, 126-136, doi: 10.1016/j.firesaf.2017.06.002.
- 49. Ronchi, E., Nilsson, D., Modig, H., Walter, A.L (2016). Variable Message Signs for road tunnel emergency evacuations. Applied Ergonomics, 52, 253-264, doi:10.1016/j.apergo.2015.07.025.
- 50. Rozporządzenie Ministra Energii z dnia 23 listopada 2016 r. w sprawie szczegółowych wymagań dotyczących prowadzenia ruchu podziemnych zakładów górniczych, Dz.U. 2017, poz. 1118, z poźn. zm. (Journal of Laws 2017 Item 1118, as amended, Regulation of the Minister of Energy of November 23, 2016 on Detailed Requirements for the Operation of Underground Mining Plants).
- 51. Rozporządzenie Ministra Pracy i Polityki Socjalnej z dnia 26 września 1997 r. w sprawie ogólnych przepisów bezpieczeństwa i higieny pracy, Dz.U. 2003. nr 169. poz. 1650, z poźn. zm. (Journal of Laws 2003 No. 169 Item 1650, as amended, Regulation of the Minister of Labor and Social Policy of September 26, 1997 on General Occupational Health and Safety Regulations).
- 52. Stańczak, L., Kaniak, W. (2021). Occupational health and safety management in hard coal mines in the aspect of dust hazard. Mining Machines, 2, 53-62, doi: 10.32056/KOMAG2021.2.6.
- 53. Ustawa z dnia 26 czerwca 1974 r. Kodeks pracy, Dz.U. 2022, poz. 1510, z późn. zm. (Journal of Laws 2022 Item 1510, as amended, Act of June 9, 1974, Labor Code).
- 54. Ustawa z dnia 9 czerwca 2011 r. - Prawo geologiczne i górnicze, Dz.U. 2023, poz. 633 (Journal of Laws 2023 Item 633, Act of June 26, 2011, Geological and Mining Law).
- 55. Wan, Z., Zhou, T., Tang, Z., Pan, Y., Zhang, L. (2021). Smart Design for Evacuation Signage Layout for Exhibition Halls in Exhibition Buildings Based on Visibility. International Journal of Geo-Information, 10, 806, hdoi:10.3390/ijgi10120806.
- 56. Wang, Y., Kyriakidis, M., Dang, V.N. (2021). Incorporating human factors in emergency evacuation - An overview of behavioral factors and models. International Journal of Disaster Risk Reduction, 60, 102254, doi:10.1016/j.ijdrr.2021.102254.
- 57. Wong, L.T., Lo, K.C. (2007). Experimental study on visibility of exit signs in buildings. Building and Environment, 42, 1836-1842, doi:10.1016/j.buildenv.2006.02.011.
- 58. Xie, H., Filippidis, L., Galea, E.R., Blackshields D., Lawrence, P.J. (2012). Experimental analysis of the effectiveness of emergency signage and its implementation in evacuation simulation. Fire and Materials, 36, 367-382, doi:10.1002/fam.1095.
- 59. Yasufuku, K., Akizuki, Y., Hokugo, A., Takeuchi, Y., Takashima, A., Matsui, T., Suzuki, H., Pinheiro, A.T.K. (2017). Noticeability of illuminated route signs for tsunami evacuation. Fire Safety Journal, 91, 926-936, doi:10.1016/j.firesaf.2017.04.038.
- 60. Yuan, Z., Jia, H., Zhang, L., Bian, L. (2018). A social force evacuation model considering the effect of emergency signs. Simulation, 94(8), 723-737, doi:10.1177/0037549717741350.
- 61. Yuki, A., Takeyoshi, T., Hidekazu, S., Tsuneto, T. (2005). Calculation method for visibility of emergency sign in fire taking into account of smoke adhesion. Fire Safety Science, 8, 1093-1105, doi:10.3801/IAFSS.FSS.8-1093.
- 62. Zeng, Q. (2011). Performance evaluation ofsignage system in subway stations. PhD thesis. Montreal, Quebec, Canada: Concordia University.
- 63. Zhang, Z., Jia, L., Qin, Y. (2017). Optimal Number and Location Planning of Evacuation Signage in Public Space. Safety Science, 91, 132-147, doi:10.1016/j.ssci.2016.07.021.
- 64. Zijlstra, E., Hagedoorn, M., Krijnen, W.P., van der Schans, C.P., Mobach, M.P. (2016). Route complexity and simulated physical ageing negatively influence wayfinding. Applied Ergonomics, 56, 62-67, doi:10.1016/j.apergo.2016.03.009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d5d986b-d324-4ce1-96dc-f0fbd13757a3