Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Damage of bone structures is mainly conditioned by bone quality related to the bone strength. The purpose of this work was to present a simple and reliable numerical treatment of a quasi-brittle damage constitutive model coupled with two different elastic modulus and to compare the numerical results with the experimental ones. Methods: To achieve this goal, a QCT based finite element model was developed within the framework of CDM (Continuum Damage Mechanics) and implemented in the FE code (ABAQUS). It described the propagation of brittle cracks which will help to predict the ultimate load fracture of a human vertebra by reproducing the experimental failure under quasi-static compressive loading paths of nineteen cadaveric lumbar vertebral bodies. Results: The numerical computations delivered by the proposed method showed a better agreement with the available experimental results when bone volume fraction related Young’s modulus (E(BV/TV)) is used instead of density related Young’s modulus (E(ρ)). Also, the study showed that the maximum relative error (%) in failure was 8.47% when E(BV/TV) was used, whereas the highest relative error (%) was 68.56% when E(ρ) was adopted. Finally, a mesh sensitivity analysis revealed that the element size has a weak incidence on the computed load magnitude. Conclusions: The numerical results provided by the proposed quasi-brittle damage model combined with E(BV/TV) are a reliable tool for the vertebrae fracture prediction.
Czasopismo
Rocznik
Tom
Strony
143--151
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
- Laboratoire de Recherche Matériaux Mesures et Application (MMA), University of Carthage, National Institute of Sciences and Technology (INSAT), Tunis, Tunisia
autor
- Laboratoire de Recherche Matériaux Mesures et Application (MMA), University of Carthage, National Institute of Sciences and Technology (INSAT), Tunis, Tunisia
autor
- Aix Marseille University, (ISM) Institute of Movement Sciences, Marseille, France
autor
- Aix Marseille University, (ISM) Institute of Movement Sciences, Marseille, France
autor
- ICD/LASMIS, Université de Technologie de Troyes, Troyes, France
Bibliografia
- [1] BENEDIKT H., EGON P., ENRICO S. et al., Mathematical relationships between bone density and mechanical properties: A literature review 2008, Clinical Biomechanics, 2008, 23 (2008), 135–146.
- [2] BREDBENNER T.L., NICOLETTA D.P., DAVY D.T., Modeling damage in human vertebral trabecular bone under experimental loading, Proceedings of the 2006 SEM Annual Conference and Exposition on Experimental and Applied Mechanics, St. Louis, Missouri, US, 2006.
- [3] CHABOCHE J.L., Continuum Damage Mechanics: Part I and II, J. Appl. Mech., 1988, 55, 59–79.
- [4] CHEVALIER Y., CHARLEBOIS M., PAHR D. et al., A patientspecific finite element methodology to predict damage accumulation in vertebral bodies under axial compression, sagittal flexion and combined loads, Computer Methods in Biomechanics and Biomedical Engineering, 2008, 477–487.
- [5] CLOUTHIER A.L., HOSSEINI H.S., MAQUER G. et al., Finite element analysis predicts experimental failure patterns in vertebral bodies loaded via intervertebral discs up to large deformation, Med. Eng. Phys, 2015, 37, 599–604.
- [6] GIAMBINI H., QIN X., DAESCU D.D. et al., Specimen-Specific Vertebral Fracture Modeling: A Feasibility Study using the Extended Finite Element Method, Med. Biol. Eng. Comput., 2016, 54 (4), 589–593.
- [7] GIBSON L.J., The Mechanical behavior of calcellous bone, J. Biomech., 1985, 18 (5), 317–328.
- [8] GOULET R.W., GOLDSTEIN S.A., CIARELLI M.J. et al., The relationship between the structural and orthogonal compressive properties of trabecular bone, J. Biomech., 1994, 27, 375–389.
- [9] HAMBLI R., BETTAMER A., ALLAOUI S., Finite element prediction of proximal femur fracture pattern based on orthotropic behavior law coupled to quasi-brittle damage, Medical Engineering and Physics, 2012, (34), 202–210.
- [10] JACOBS C.R., Numerical Simulation of Bone Adaptation to Mechanical Loading, PhD Thesis, Stanford University, Department of Mechanical Engineering, 1994.
- [11] KANEKO T.S., BELL J.S., PEJCIC M.R. et al., Mechanical properties, density and quantitative CT scan data of trabecular bone with and without metastases, J. Biomech., 2004, 37, 523–530.
- [12] LIPS P. VAN SCHOOR, Quality of life in patients with osteoporosis, Osteoporosis Int. J., 2005, 16 (5), 447–455.
- [13] MANAI M.S, Modélisation de l´endommagement d´une structure osseuse, PFE Instrumentation et Maintenance Industrielle, INSAT, Université de Carthage, Tunisie, 2015.
- [14] MARIGO J.J., Formulation of a damage law for an elastic material. Comptes Rendus, Serie II – Mécanique, Physique, Chimie, Sciences de la Terre, 1981, 1390–1312.
- [15] MARQUER H., SCHWIEDRZIK J., ZYSSET Ph.K., Embedding of human vertebral bodies leads to higher ultimate load and altered damage localisation under axial compression, Comput. Meth. Biomech. Biomed. Engin., 2014, 17 (12), 1311–1322.
- [16] MARSHALL D., JOHNELLO., WEDEL H., Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures, BMJ, 1996, 312 (7041), 1254–1259.
- [17] MIRZAEI M., ZEINALI A., RAZMJOO A. et al., On prediction of the strength levels and failure patterns of human vertebrae using quantitative computed tomography (QCT-based finite element method, J. Biomech., 2009, 42, 1584–1591.
- [18] MORGAN E.F., BAYRAKTAR H.H., KEAVENY T.M., Trabecular bone modulus–density relationships depend on anatomic site, J. Biomech., 2003, Vol. 36, No. 78, 897–904.
- [19] PECK W.A., BURCKHARDT P., CHRISTIANSEN C., Consensus development conference. Diagnosis, prophylaxis, and treatment of osteoporosis, Am. J. Med., 1993, 94 (6), 646–650.
- [20] PIJAUDIER-CABOT G., BAZANT Z.P., Nonlocal damage theory, Journal of Engineering Mechanics, 1987, 113(10), 1512–1533, 0733–9399.
- [21] SAANOUNI K., HAMED M., Micromorphic approach of finite gradient – elastoplasticity fully coupled with ductile damage. Formulation and computational aspects, International Journal of Solids and Structures, 2013, 50, 2289–2309.
- [22] SAANOUNI K., FORSTER CH., BEN HATIRA F., On the anelastic flow damage, Int. J. Damage Mech., 1996, 140–169.
- [23] SAPIN E., Personnalisation des propriétés mécaniques de l'os vertébral à l’aide d'imagerie à basse dose d'irradiation: prédiction du risque de fracture, PhD Thesis, Arts et Métiers ParisTech, Paris 2008.
- [24] SCHILEOA E., TADDEIA F., CRISTOFOLINIA L. et al., Subject--specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro, J. Biomech., 2008, 41, 356–367.
- [25] ULRICH D., VAN RIETBERGEN B., LAIB A., RUEGSEGGER P., The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone, Bone, 1999, 25 (1), 55–60.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d5ca8a7-5351-46a2-b4aa-17b6ac2c7d08