PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on light weight intelligent identification method of coal and gangue

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Accurate identification of coal and gangue is essential for clean and efficient use of coal. Existing target detection algorithms are ineffective in detecting small-target and overlapping gangue, and contain complex network structure and large parameter volume, which cannot meet the demand of real-time detection of edge devices. To address the above problems, a lightweight detection and identification approach of coal gangue based on improved YOLOv5s is proposed. The depth-separable convolutions are used to replace ordinary convolutions, and the C3 (Concentrated-Comprehensive Convolution Block) Ghost module is constructed to replace all C3 modules in the YOLOv5s to reduce model computation and parameters. The CA (Coordinate Attention) attention mechanism is introduced to strengthen the attention to the target to be detected, suppress irrelevant background interference, and improve the detection accuracy of the model. The Focal- EIOU (Focal and Efficient Intersection Over Union) loss function was introduced to replace the original CIOU. Extensive experiments substantiated the proposed approach can effectively and quickly detect the small-target and overlapping coal gangue accurately, and the mAP (mean Average Presicion) reaches 97.7%. Compared with the original YOLOv5s, the proposed approach reduces the number of parameters and the amount of computation by 48.5% and 43%, respectively, under the premise of maintaining the same detection accuracy.
Rocznik
Strony
art. no. 187975
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
  • State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China
autor
  • State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China
  • China Coal Technology Engineering Group Coal Mining Research Institute, Beijing 100013, China
autor
  • State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China
autor
  • State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China
autor
  • State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China
autor
  • State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China
Bibliografia
  • ADARSH, P., RATHI, P., KUMAR, M. 2020. YOLO v3-Tiny: Object Detection and Recognition using one stage improved model. In 2020 6th international conference on advanced computing and communication systems (ICACCS) (pp. 687-694). IEEE.
  • GAO, A., LU, S., XU, R., LI, Z., WANG, B., ZHU, S., GAO Y., PAN, B. 2024. Deep reinforcement learning based planning method in state space for lunar rovers. Engineering Applications of Artificial Intelligence, 127, 107287.
  • HAN, K., WANG, Y., TIAN, Q., GUO, J., XU, C., XU, C. 2020. Ghostnet: More features from cheap operations. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 1580-1589).
  • HOU, Q., ZHOU, D., FENG, J. 2021. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 13713-13722).
  • HU, J., SHEN, L., SUN, G. 2018. Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132-7141).
  • IWASZENKO, S., ROG, L. 2021. Application of deep learning in petrographic coal images segmentation. Minerals, 11(11), 1265.
  • LAI, W., HU, F., KONG, X., YAN, P., BIAN, K., DAI, X. 2022. The study of coal gangue segmentation for location and shape predicts based on multispectral and improved Mask R-CNN. Powder Technology, 407, 117655.
  • LI, J., WANG, J. 2019. Comprehensive utilization and environmental risks of coal gangue: A review. Journal of Cleaner Production, 239, 117946.
  • LIU, T., ZHANG, Z., LEI, Z., HUO, Y., WANG, S., ZHAO, J., ZHANG J., JIN X., Zhang, X. 2024. An approach to ship target detection based on combined optimization model of dehazing and detection. Engineering Applications of Artificial Intelligence, 127, 107332.
  • LV, Z., CUI, Y., ZHANG, K., SUN, M., LI, H., WANG, W. 2023. Investigating comparisons on the coal and gangue in various scenarios using multidimensional image features. Minerals Engineering, 204, 108450.
  • LV, Z., WANG, W., ZHANG, K., LI, W., FENG, J., XU, Z. 2022. A synchronous detection-segmentation method for oversized gangue on a coal preparation plant based on multi-task learning. Minerals Engineering, 187, 107806.
  • PAN, H., SHI, Y., LEI, X., WANG, Z., XIN, F. 2022. Fast identification model for coal and gangue based on the improved tiny YOLO v3. Journal of Real-Time Image Processing, 19(3), 687-701.
  • SHANG, D., HUANG, Y., HUANG, X., ZHANG, T., NIU, Y. 2024. Fuzzy adaptive control of coal gangue sorting parallel robot with variable load. International Journal of Coal Preparation and Utilization, 1-22.
  • SHANG, D., YANG, Z., LV, Z. 2023. Recognition of coal and gangue under low illumination based on SG-YOLO model. International Journal of Coal Preparation and Utilization, 1-16.
  • WANG, C. Y., BOCHKOVSKIY, A., LIAO, H. Y. M. 2023. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art. for real-time object detectors. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 7464-7475).
  • WANG, C. Y., BOCHKOVSKIY, A., LIAO, H. Y. M. 2021. Scaled-yolov4: Scaling cross stage partial network. In Proceedings of the IEEE/cvf conference on computer vision and pattern recognition (pp. 13029-13038).
  • WANG, G., MENG, L., 2023. Development of coal mine intelligence and its technical equipment. China Coal. 50,1-27.
  • WANG, L., WANG, X., LI, B. 2023. Data-driven model SSD-BSP for multi-target coal-gangue detection. Measurement, 219, 113244.
  • WANG, Q., WU, B., ZHU, P., LI, P., ZUO, W., HU, Q. 2020. ECA-Net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 11534-11542).
  • WEN, X., LI, B., WANG, X., LI, J., WEI, D., GAO, J., ZHANG, J. 2023. A Swin transformer-functionalized lightweight YOLOv5s for real-time coal–gangue detection. Journal of Real-Time Image Processing, 20(3), 47.
  • WEI, X., WANG, F., LIU, C., HE, D., XU, D. 2023. Coal gangue image recognition model based on CSPNet-YOLOv7 target detection algorithm. Coal Science and Technology, 1-13.
  • WOO, S., PARK, J., LEE, J. Y., KWEON, I. S. 2018. Cbam: Convolutional block attention module. In Proceedings of the European conference on computer vision (ECCV) (pp. 3-19).
  • XU, M., MAO, Y., YAN, Z., ZHANG, M., Xiao, D. 2023. Coal and Gangue Classification Based on Laser-Induced Breakdown Spectroscopy and Deep Learning. ACS omega, 8(50), 47646-47657.
  • YANG, L., ZHANG, R. Y., LI, L., XIE, X. 2021. Simam: A simple, parameter-free attention module for convolutional neural networks. In International conference on machine learning (pp. 11863-11874). PMLR.
  • YAN, P., WANG, W., LI, G., ZHAO, Y., WANG, J., WEN, Z. 2024. Detection of coal gangue based on spectral technology and enhanced lightweight YOLOv7-tiny. International Journal of Coal Preparation and Utilization, 1-21.
  • ZHANG, Y. F., REN, W., ZHANG, Z., JIA, Z., WANG, L., TAN, T. 2022. Focal and efficient IOU loss for accurate bounding box regression. Neurocomputing, 506, 146-157.
  • ZHENG, Z., WANG, P., LIU, W., LI, J., YE, R., REN, D. 2020. Distance-IoU loss: Faster and better learning for bounding box regression. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, No. 07, pp. 12993-13000).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d58955d-8aac-4792-9f6d-ca378f4ad9fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.