PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bidirectionally stretched flow of Jeffrey liquid with nanoparticles, Rosseland radiation and variable thermal conductivity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heat and mass transfer stretched flow of an incompressible, electrically conducting Jeffrey fluid has been studied numerically. Nanoparticles are suspended in the base fluid and it has many applications such as cooling of engines, thermal absorption systems, lubricants fuel cell, nanodrug delivery system and so on. Temperature dependent variable thermal conductivity with Rosseland approximation is taken into account and suction effect is employed in the boundary conditions. The governing partial differential equations are first transformed into set of ordinary differential equations using selected similarity transformations, which are then solved numerically using Runge-Kutta-Felhberg fourth-fifth order method along with shooting technique. The flow, heat and mass transfer characteristics with local Nusselt number for various physical parameters are presented graphically and a detailed discussion regarding the effect of flow parameters on velocity and temperature profiles are provided. It is found that, increase of variable thermal conductivity, radiation, Brownian motion and thermophoresis parameter increases the rate of heat transfer. Local Nusselt number has been computed for various parameters and it is observed that, in the presence of variable thermal conductivity and Rosseland approximation, heat transfer characteristics are higher as compared to the constant thermal conductivity and linear thermal radiation.
Rocznik
Strony
33–--57
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta-577451, Shimoga, Karnataka, India
  • Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta-577451, Shimoga, Karnataka, India
  • School of Civil Engineering, Birmingham University, Edgbaston Birmingham B15 2TT, United Kingdom
  • Government First Grade College, Koppa, Chikkamagaluru-577126, Karnataka, India
  • Department of Mechanical Engineering, Cleveland State University, Cleveland, Ohio-44115, USA
Bibliografia
  • [1] Choi S.U.S., Eastman J.A.: Enhancing thermal conductivity of fluids with nanoparticles. ASME FED. 231/MD 66(1995), 99–105.
  • [2] Keblinski P., Phillpot S.R., Choi S.U.S., Eastman J.A.: Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Tran. 45(2002), 4, 855–863.
  • [3] Sheikholeslami M., Rashidi M.M., Hayat T., Ganji D.D.: Free convection of magnetic nanofluid considering MFD viscosity effect. J. Mol. Liq. 218(2016), 393–399.
  • [4] Reddy M.G.: Influence of magnetohydrodynamic and thermal radiation boundary layer flow of a nanofluid past a stretching sheet. J. Sci. Res. 6(2014), 2, 257–272.
  • [5] Rup K., Nering K: Unsteady natural convection in micropolar nanofluids. Arch. Thermodyn. 35(2014), 3, 155–170.
  • [6] Abbas Z., Naveeda M., Sajid M.: Hydromagnetic slip flow of nanofluid over a curved stretching surface with heat generation and thermal radiation. J. Mol. Liq. 215(2016), 756–762.
  • [7] Veena P.H., Biradar S.M., Nandeppanavar M.M.: Free convection boundary layer flow and heat transfer of a nano fluid over a moving plate with internal heat generation. Ind. Eng. Lett. 6 (2016), 2, 39–49.
  • [8] Beg O.A., Rashidi M.M., Akbari M., Hosseini A.: Comparative numerical study of single-phase and two-phase models for bio-nanofluid transport phenomena. J. Mech. Med. Biol. 14(2014), 1, 1450011.
  • [9] Garoosi F., Bagheri G., Rashidi M.M.: Two phase simulation of natural convection and mixed convection of the nanofluid in a square cavity. Powder Technol. 275(2015), 239–256.
  • [10] Rashidi M.M., Nasiri M., Khezerloo M., Laraqi N.:Numerical investigation of magnetic field effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls. J. Magn. Magn. Mater. 93(2016), 674–682.
  • [11] Sheikholeslami M., Shehzad S.A.: Magnetohydrodynamic nanofluid convection in a porous enclosure considering heat flux boundary condition. Int. J. Heat Mass Tran. 106(2017), 1261–1269.
  • [12] Kumar R., Sood S., Sheikholeslami M., Shehzad S.A.: Nonlinear thermal radiation and cubic autocatalysis chemical reaction effects on the flow of stretched nanofluid under rotational oscillations. J. Colloid Interf. Sci. 505(2017) 253–265.
  • [13] Nadeem S., Zaheer S., Fang T.: Effects of thermal radiation on the boundary layer flow of a Jeffrey fluid over an exponentially stretching surface. Numer. Algor. 57(2011), 187–205.
  • [14] Hayat T., Shehzad S.A., Alsaedi A.: Three-dimensional stretched flow of Jeffrey fluid with variable thermal conductivity and thermal radiation, Appl. Math. Mech.- Engl. 34 (2013), 7, 823–832.
  • [15] Ashraf M.B., Hayat T., Alsaedi A., Shehzad S.A.: Convective heat and mass transfer in MHD mixed convection flow of Jeffrey nanofluid over a radially stretching surface with thermal radiation. J. Cent. South Univ. 22(2015), 1114–1123.
  • [16] Prasannakumara B.C., Krishnamurthy M.R., Gireesha B.J., Gorla R.S.R.: Effect of multiple slips and thermal radiation on MHD flow of Jeffery nanofluid with heat transfer. J. Nanofluids. 5(2016), 82–93.
  • [17] Abolbashari M.H., Freidoonimehr N., Nazari F., Rashidi M.M.: Analytical modeling of entropy generation for Casson nano-fluid flow induced by a stretching surface. Adv. Powder Technol. 26(2015), 2, 542–552.
  • [18] Ramesh G.K., Prasannakumara B.C., Gireesha B.J., Shehzad S.A., Abbasi F.M.: Three dimensional flow of Maxwell fluid with suspended nanoparticles past a bidirectional porous stretching surface with thermal radiation. Therm. Sci. Eng. Prog. 1(2017), 6–14.
  • [19] Mushtaq A., Mustafa M., Hayat T., Alsaedi A.: Nonlinear radiative heat transfer in the flow of nanofluid due to solar energy: A numerical study. J. Taiwan Inst. Chem. Eng. 45(2014), 4, 1176–1183.
  • [20] Shehzad S.A., Hayat T., Alsaedi A., Obid M.A.: Nonlinear thermal radiation in three-dimensional flow of Jeffrey nanofluid: A model for solar energy. Appl. Math. Comp. 248(2014), 273–286.
  • [21] Prasannakumara B.C., Gireesha B.J., Gorla R.S.R., Krishnamurthy M.R.: Effects of chemical reaction and nonlinear thermal radiation on Williamson nanofluid slip flow over a stretching sheet embedded in a porous medium. J. Aerospace Eng. 29(2016), 5, 04016019.
  • [22] Mushtaq A., Mustafa M., Hayat T., Alsaedi A.: A numerical study for threedimensional viscoelastic flow inspired by non-linear radiative heat flux. Int. J. Nonlinear Mech. 79(2016), 83–87.
  • [23] Bhattacharyya K.: Effects of radiation and heat source/sink on unsteady MHD boundary layer flow and heat transfer over a shrinking sheet with suction/injection. Front. Chem. Sci. Eng. 5 (2011), 3, 376–384.
  • [24] Rajotia D., Jat R.N.: Dual solutions of three dimensional MHD boundary layer flow and heat transfer due to an axisymmetric shrinking sheet with viscous dissipation and heat generation/absorption. Indian J. Pure Appl. Phys. 52(2014), 812–820.
  • [25] Hayat T., Qayyum S., Imtiaz M., Alsaedi A.: Three-dimensional rotating flow of Jeffrey fluid for Cattaneo-Christov heat flux model. AIP Adv. 6(2016), 025012:1-12.
  • [26] Megahed A.M.: Variable fluid properties and variable heat flux effects on the flow and heat transfer in a non-Newtonian Maxwell fluid over an unsteady stretching sheet with slip velocity. Chin. Phys. B. 22(2013), 9, 094701:1–6.
  • [27] Adegbie K.S., Omowaye A.J., Disu A.B., Animasaun I.L.: Heat and mass transfer of upper convected Maxwell fluid flow with variable thermo-physical properties over a horizontal melting surface. Appl. Math. 6(2015), 1362–1379.
  • [28] Salahuddin T., Malik M.Y., Hussain A., Bilal S., Awais M.: Effects of transverse magnetic field with variable thermal conductivity on tangent hyperbolic fluid with exponentially varying viscosity. AIP Adv. 5(2015), 127103:1–14.
  • [29] Meraj M.A., Shehzad S.A., Hayat T., Abbasi F.M., Alsaedi A.: DarcyForchheimer flow of variable conductivity Jeffrey liquid with Cattaneo-Christov heat flux theory. Appl. Math. Mech.-Engl. 38(2017), 4, 557–566.
  • [30] Liu I.C., Andersson H.I.: Heat transfer over a bidirectional stretching sheet with variable thermal conditions. Int. J. Heat Mass Tran. 51(2008), 4018–4024.
  • [31] Mushtaq A., Mustafa M., Hayat T., Alsaedi A.: A numerical study for threedimensional viscoelastic flow inspired by non-linear radiative heat flux. Int. J. Nonlinear Mech. 79 (2016), 83–87.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d55f4cc-4210-479c-be65-05f3137a6c53
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.