PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A class of strongly convergent subgradient extragradient methods for solving quasimonotone variational inequalities

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The primary goal of this research is to investigate the approximate numerical solution of variational inequalities using quasimonotone operators in infinite-dimensional real Hilbert spaces. In this study, the sequence obtained by the proposed iterative technique for solving quasimonotone variational inequalities converges strongly toward a solution due to the viscosity-type iterative scheme. Furthermore, a new technique is proposed that uses an inertial mechanism to obtain strong convergence iteratively without the requirement for a hybrid version. The fundamental benefit of the suggested iterative strategy is that it substitutes a monotone and non-monotone step size rule based on mapping (operator) information for its Lipschitz constant or another line search method. This article also provides a numerical example to demonstrate how each method works.
Wydawca
Rocznik
Strony
art. no. 20220202
Opis fizyczny
Bibliogr. 39 poz., tab.
Twórcy
  • Department of Mathematics, Faculty of Science, Center of Excellence in Theoretical and Computational Science (TaCS-CoE) & KMUTTFixed Point Research Laboratory, Room SCL 802 Fixed Point Laboratory, Science Laboratory Building, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand
autor
  • Department of Mathematics, Faculty of Science, Center of Excellence in Theoretical and Computational Science (TaCS-CoE) & KMUTTFixed Point Research Laboratory, Room SCL 802 Fixed Point Laboratory, Science Laboratory Building, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand
  • Department of Mathematics, Ataturk University, Erzurum 25240, Turkey
autor
  • Department of Mathematics, Ataturk University, Erzurum 25240, Turkey
autor
  • Department of Mathematics and Computer Science, Faculty of Science and Technology, Applied Mathematics for Science and Engineering Research Unit (AMSERU), Program in Applied Statistics, Rajamangala University of Technology Thanyaburi (RMUTT), Pathum Thani 12110, Thailand
Bibliografia
  • [1] A. S. Antipin, On a method for convex programs using a symmetrical modification of the Lagrange function, Ekonomika I Matematicheskie Metody 12 (1976), no. 6, 1164–1173.
  • [2] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, vol. 408, Springer, New York, 2011.
  • [3] L. C. Ceng, A. Petruşel, X. Qin, and J. C. Yao, Two inertial subgradient extragradient algorithms for variational inequalities with fixed-point constraints, Optimization 70 (2020), no. 5–6, 1337–1358.
  • [4] L. C. Ceng, A. Petruel, X. Qin, and J. C. Yao, Pseudomonotone variational inequalities and fixed points, Fixed Point Theory 22 (2021), no. 2, 543–558.
  • [5] L. C. Ceng, Two inertial linesearch extragradient algorithms for the bilevel split pseudomonotone variational inequality with constraints, J. Appl. Numer. Optim. 2 (2020), no. 2, 213–233.
  • [6] L. C. Ceng, A. Petruel, X. Qin, and J. C. Yao, A modified inertial subgradient extragradient method for solving pseudomonotone variational inequalities and common fixed point problems, Fixed Point Theory 21 (2020), no. 1, 93–108.
  • [7] L.-C. Ceng, A. Petrusel, J.-C. Yao, and Y. Yao, Hybrid viscosity extragradient method for systems of variational inequalities, fixed points of nonexpansive mappings, zero points of accretive operators in Banach spaces, Fixed Point Theory 19 (2018), no. 2, 487–502.
  • [8] L.-C. Ceng, A. Petrusel, J.-C. Yao, and Y. Yao, Systems of variational inequalities with hierarchical variational inequality constraints for Lipschitzian pseudocontractions, Fixed Point Theory 20 (2019), no. 1, 113–134.
  • [9] L.-C. Ceng and M. Shang, Hybrid inertial subgradient extragradient methods for variational inequalities and fixed point problems involving asymptotically nonexpansive mappings, Optimization 70 (2019), no. 4, 715–740.
  • [10] L.-C. Ceng and M. Shang, Composite extragradient implicit rule for solving a hierarch variational inequality with constraints of variational inclusion and fixed point problems, J. Inequalit. Appl. 2020 (2020), no. 1, 19.
  • [11] L.-C. Ceng and Q. Yuan, Composite inertial subgradient extragradient methods for variational inequalities and fixed point problems, J. Inequalit. Appl. 2019 (2019), no. 1, 1–20.
  • [12] Y. Censor, A. Gibali, and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl. 148 (2010), no. 2, 318–335.
  • [13] Y. Censor, A. Gibali, and S. Reich, Strong convergence of subgradient extragradient methods for the variational inequality problem in hilbert space, Optim Methods Software. 26 (2011), no. 4–5, 827–845.
  • [14] Y. Censor, A. Gibali, and S. Reich, Extensions of Korpelevich extragradient method for the variational inequality problem in euclidean space, Optimization 61 (2012), no. 9, 1119–1132.
  • [15] C. M. Elliott, Variational and quasivariational inequalities applications to free–boundary ProbLems. (claudio baiocchi and antónio capelo), SIAM Review 29 (1987), no. 2, 314–315.
  • [16] L. He, Y.-L. Cui, L.-C. Ceng, T.-Y. Zhao, D.-Q. Wang, and H.-Y. Hu, Strong convergence for monotone bilevel equilibria with constraints of variational inequalities and fixed points using subgradient extragradient implicit rule, J. Inequalit. Appl. 2021 (2021), no. 1, 1–37.
  • [17] A. N. Iusem and B. F. Svaiter, A variant of Korpelevich’s method for variational inequalities with a new search strategy, Optimization 42 (1997), no. 4, 309–321.
  • [18] G. Kassay, J. Kolumbán, and Z. Páles, On nash stationary points, Publicationes Mathematicae. 54 (1999), no. 3–4, 267–279.
  • [19] G. Kassay, J. Kolumbán, and Z. Páles, Factorization of minty and Stampacchia variational inequality systems, Eur. J. Operat. Res. 143 (2002), no. 2, 377–389.
  • [20] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, Society for Industrial and Applied Mathematics, Academic Press, New York, Jan 2000.
  • [21] I. Konnov, Equilibrium Models and Variational Inequalities, vol. 210, Elsevier, Amsterdam, 2007.
  • [22] G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Matecon 12 (1976), 747–756.
  • [23] L. Liu, S. Y. Cho, and J.-C. Yao, Convergence analysis of an inertial Tseng’s extragradient algorithm for solving pseudomonotone variational inequalities and applications, J. Nonlinear Var. Anal. 5 (2021), no. 4, 627–644.
  • [24] P.-E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008), no. 7–8, 899–912.
  • [25] A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl. 241 (2000), no. 1, 46–55.
  • [26] A. Nagurney, Network Economics, A variational inequality approach, Springer Dordrecht, New York, 1999.
  • [27] M. Aslam Noor, Some iterative methods for nonconvex variational inequalities, Comput. Math. Model. 21 (2010), no. 1, 97–108.
  • [28] G. Stampacchia, Formes bilinéaires coercitives sur les ensembles convexes, Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences 258 (1964), no. 18, 4413.
  • [29] P. Sunthrayuth, H. ur Rehman, and P. Kumam, A modified Popov’s subgradient extragradient method for variational inequalities in Banach spaces, J. Nonlinear Funct. Anal. 2021 (2021), no. 1, Article ID 7.
  • [30] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, 2009.
  • [31] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim. 38 (2000), no. 2, 431–446.
  • [32] H. ur Rehman, A. Gibali, P. Kumam, and K. Sitthithakerngkiet, Two new extragradient methods for solving equilibrium problems, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 115 (2021), no. 2, 75.
  • [33] H. ur Rehman, P. Kumam, Y. Je Cho, and P. Yordsorn, Weak convergence of explicit extragradient algorithms for solving equilibirum problems, J. Inequalit. Appl. 2019 (2019), no. 1, 1–25.
  • [34] H. ur Rehman, P. Kumam, A. Gibali, and W. Kumam, Convergence analysis of a general inertial projection-type method for solving pseudomonotone equilibrium problems with applications, J. Inequalit. Appl. 2021 (2021), no. 1, 1–27.
  • [35] H. ur Rehman, P. Kumam, Y. Je Cho, Y. I. Suleiman, and W. Kumam, Modified Popov’s explicit iterative algorithms for solving pseudomonotone equilibrium problems, Optim Methods Software 36 (2020), 1–32.
  • [36] H. ur Rehman, W. Kumam, P. Kumam, and M. Shutaywi, A new weak convergence non-monotonic self-adaptive iterative scheme for solving equilibrium problems, AIMS Mathematics 6 (2021), no. 6, 5612–5638.
  • [37] H.-K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Aust. Math. Soc. 65 (2002), no. 1, 109–113.
  • [38] J. Yang, H. Liu, and Z. Liu, Modified subgradient extragradient algorithms for solving monotone variational inequalities, Optimization 67 (2018), no. 12, 2247–2258.
  • [39] L. Zhang, C. Fang, and S. Chen, An inertial subgradient-type method for solving single-valued variational inequalities and fixed point problems, Numer. Algorithms 79 (2018), no. 3, 941–956.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d4d5dff-737f-4ce2-9a76-487ed1b2bf48
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.