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1. Introduction

To sustain high reliability is the goal of every system and product. 
However, no matter how good the system design is, the performance 
of every system and product will ultimately deteriorate due to wear, 
fatigue, environmental conditions and other causes. When the deterio-
ration becomes too severe, it may cause system malfunction or failure, 
which may result in significantly high maintenance costs and worst 
of all, safety hazards. Therefore, both operators and maintainers tend 

to adopt a preventive maintenance strategy to prevent system break-
downs, in that the preventive maintenance strategy usually performs 
before failures and thus it has a higher economic and safety signifi-
cance than corrective maintenance which only takes place when the 
failure is observed.

Condition-based maintenance (CBM) is a kind of preventive 
maintenance strategy.  It recommends maintenance actions based on 
the health status of   the operating system. In a typical CBM policy, 
the health status of the system monitored throughout its operating life 
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In this paper, we optimize a dynamic condition-based maintenance policy for a slowly degrading system subject to soft failure and 
condition monitoring at equidistant, discrete time epochs. A random-coefficient autoregressive model with time effect is developed 
to describe the system degradation. The system age, previous state observations, and the item-to-item variability of the degra-
dation are jointly combined in the proposed degradation model. Stochastic behavior for both the age-dependent and the state-
dependent term are considered, and a Bayesian approach for periodically updating the estimates of the stochastic coefficients is 
developed to combine information from a degradation database with real-time condition-monitoring information. Based on this 
degradation model, the dynamic maintenance policy is formulated and solved in a semi-Markov decision process framework. In-
corporated with the same semi-Markov decision process framework is a novel approach for mean residual life estimation, which 
enables simultaneous residual life estimation with the optimization procedure. The effectiveness of using the proposed random-
coefficient autoregressive model with time effect rather than the existing fixed-coefficient ones to describe system degradation is 
demonstrated through a comparative study based on a real degradation dataset. The advantages of using a dynamic maintenance 
policy are also revealed.
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W prezentowanej pracy dokonano optymalizacji dynamicznej, uwzględniającej stan techniczny obiektu strategii utrzymania ru-
chu dla wolno ulegającego degradacji systemu monitorowanego w równoodległych dyskretnych chwilach czasu (epokach) pod 
względem uszkodzeń parametrycznych oraz stanu technicznego. Do opisu degradacji systemu opracowano model autoregresyjny 
z parametrami losowymi uwzględniający wpływ czasu. Proponowany model degradacji bierze pod uwagę zarówno wiek systemu 
jak i  wcześniejsze obserwacje stanu oraz zmienność degradacji pomiędzy obiektami. Rozważano zachowanie stochastyczne za-
równo składnika zależnego od wieku jak i składnika zależnego od stanu; opracowano bayesowską metodę okresowej aktualizacji 
oszacowań współczynników stochastycznych, która pozwala łączyć informacje z bazy danych o degradacji z informacjami z moni-
torowania stanu w czasie rzeczywistym. W oparciu o otrzymany model degradacji, sformułowano dynamiczną politykę utrzymania 
ruchu; problem optymalizacji tej polityki rozwiązywano w ramach procesu decyzyjnego semi-Markowa. Do procesu decyzyjnego 
włączono nowatorską metodę obliczania trwałości resztkowej, co umożliwiło ocenę trwałości resztkowej  jednocześnie z przepro-
wadzeniem procedury optymalizacyjnej. Skuteczność wykorzystania proponowanego modelu autoregresyjnego do opisu degrada-
cji systemu porównywano ze skutecznością dotychczasowych modeli z parametrami stałymi w badaniu opartym na rzeczywistym 
zbiorze danych o degradacji. Wskazano również zalety stosowania proponowanej dynamicznej strategii utrzymania ruchu.

Słowa kluczowe:	 modelowanie degradacji, model autoregresyjny, metoda bayesowska, ocena trwałości resztko-
wej, semi-markowski proces decyzyjny, utrzymanie na podstawie stanu technicznego.
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determines whether a preventive maintenance should be performed. 
Compared to traditional time-based preventive maintenance strategy, 
which sets a periodic interval to perform preventive maintenance re-
gardless of the health status of a system, CBM is more reliable and 
cost-effective. Some successful examples of implementing CBM 
in real systems have demonstrated its efficiency in preventing cata-
strophic failures and improving maintenance performance (e.g., [2, 
3, 15]).

To analyze and optimize a CBM policy for a specific system, the 
essential procedure is to develop a degradation model to describe 
the deterioration behavior of the operating system. The degradation 
model can be developed based on discrete-state or continuous-state 
stochastic processes, or their combinations. [13] and [11] considered 
a three-state continuous-time discrete-state Markov chain to model 
wear process of the diesel engine in locomotives and the gear shaft 
in gearboxes, respectively. To relax the Markovian assumption, [17] 
developed a degradation model based on a non-homogeneous semi-
Markov process to de- scribe the deterioration of wear process in the 
turbofan engines. Using these Markovian degradation models, the 
CBM optimization problem can be trans- formed into determining 
maintenance actions for all system states with different maintenance 
objectives considered, e.g., [4, 14, 18, 19]. When the evolution of 
degradation state is continuous over time, continuous-state stochastic 
degradation models are more suitable. Gamma process (e.g., [26]), 
Wiener process(e.g.,[12, 21]), inverse Gaussian process (e.g.,[5]) are 
very popular models of this kind, which often allow simple and even 
elegant solutions to inference, hypothesis testing, goodness of fit, and 
prediction problems.

However, most previously developed continuous-state stochastic 
degradation models assume the degradation trend is only driven by 
system age and not by its previous states. Nevertheless, even if this 
assumption is appropriate for many types of degradation processes, in 
a general situation it is more realistic and appropriate to assume that 
the degradation trend can depend on either the system state or its age, 
or both. For example, the crack propagation rate might be higher if 
the current crack length is larger and a longer time has passed since 
the crack started propagation. In recent years, some researchers have 
noticed the need of effective modeling approaches for describing age- 
and state-dependent degradation processes. The first worth-noting 
contribution comes from [9]. In their proposed age- and state-depend-
ent degradation model, the degradation increment over an elementary 
time interval has a discretized gamma distribution which depends on 
both the current degradation state and the operating age. Recently, 
[8,10] proposed a new class of Markovian age- and state-dependent 
degradation models, the transformed gamma process, by which the 
conditional distribution of the degradation growth over a generic time 
interval can be formulated in an analytical closed form.

The above models work very well in real applications (see ex-
amples in [9, 8, 10]), but they are only suitable to represent strictly 
monotonic degradation processes. It is not difficult to discover that 
in many industrial cases, effective description of non-monotonic deg-
radation process, e.g., due to minimal repair, reduced load, or self-
recovering mechanism [28], is also needed. Examples can be found 
in rotating machines [7], batteries [29], electronic devices [22, 23], 
etc. Therefore, [27] proposed an age- and state-dependent degradation 
model based on Wiener process to describe non-monotonic degrada-
tion processes. They obtained an analytical approximated residual life 
distribution to facilitate the residual life estimation of an operating 
system. However, the model did not consider the presence of observed 
heterogeneity among different individuals. Another age- and state-
dependent degradation model capable of describing non-monotonic 
degradation processes was proposed by [23]. [23] took advantage 
of the state-dependency characteristic of autoregressive models and 
added an age-dependent term to the autoregressive model to include 
the influence of time. This model is easy to implement in real applica-

tions and mathematically tractable. However, the model formulation 
in [23] is also not able to describe the heterogeneity among different 
individuals.

Therefore, in this paper, we will improve the autoregressive mod-
el with time effect proposed in [23], in order to extend its capability 
of describing degradation processes. To do this, we will (i) consider a 
more general formation of the autoregressive model with time effect 
by assuming both the age-dependent term and the state-dependent term 
have stochastic behaviors; and (ii) derive a Bayesian updating meth-
od to update the model coefficients during system operation, which 
combines the information across the population and the information 
coming from the real-time condition monitoring(CM). The model co-
efficient updates have explicit formulas to allow fast computation in 
each update, which is an advantage of this model, and currently can-
not be achieved by other existing age- and state-dependent degrada-
tion models.  Using this model, the procedure of estimating the mean 
residual life in [23] is no longer applicable, due to the fact that the 
explicit form for the failure time distribution is quite complicated to 
obtain in mathematical point of view. Thus, this estimation task will 
be achieved via a Monte Carlo simulation procedure. We will demon-
strate through a comparative study using the same dataset in [23] that 
the proposed model formation is superior and the Bayesian updating 
procedure indeed improves the accuracy of residual life estimation.

The proposed random-coefficient autoregressive model with time 
effect will then be applied to the optimization problem of a dynamic 
CBM policy. This maintenance policy is a commonly used control-
limit policy in many industrial applications (e.g.,[13, 23]). Since we 
update model coefficients during system operation, we will consider 
the control-limit as a dynamic one, which is up-dated when new CM 
data becomes available. The optimization of this dynamic control-lim-
it policy is achieved using a semi-Markov decision process(SMDP) 
framework. In this framework, we discover that the mean residual 
life of an operating system can be estimated simultaneously with the 
searching of the optimal control-limit. Therefore, it provides a novel 
idea of estimating the mean residual life for age- and state-dependent 
degradation models, and it also extends the application of the SMDP 
framework which is commonly considered as an approach only for 
policy decision problems. We will compare the mean residual life es-
timation results obtained by the SMDP-based approach with that by      
the Monte Carlo simulation approach, to reveal the advantage and 
disadvantage of the SMDP-based approach.

The rest of the paper is organized as follows. Section 2 introduces 
the general formation of the random-coefficient autoregressive model 
with time effect and the procedure to calculate the prior estimates of 
model coefficients. Section 3 develops a Bayesian updating frame-
work to update the model coefficients for operating system. Section 
4 describes the algorithms for optimizing the CBM policy and cal-
culating the mean residual life for operating system. Section 5 gives 
numerical analysis. Conclusions and future research are given in Sec-
tion 6.

2. The random-coefficient autoregressive model with 
time effect

Recall that the autoregressive model with time effect proposed 
in [23] deals with the degradation process whose degradation state 
can only be known at discrete inspection times.  Suppose the deg-
radation process starts from a known initial state Y0, and is moni-
tored through regular periodic inspections with inspection interval 
h. Let Y1 denote the degradation state observed at inspection time 
{ } ( )_ , 1,2,3,...t n nh n= = , then the autoregressive model with time 
effect has the following form defined as:
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where b is the model order; δ0 is a constant model coefficient; β and 
φν are also model coefficients; εn{ }   are i.i.d. error terms and follow 

normal distribution N 0 2,σ( ) . To account for the heterogeneity 
among degradation paths of individual units, we consider a random-
coefficient autoregressive model with time effect by supposing some 
(or all) of β and φν are possibly random.

[23] presented the procedure of choosing an appropriate model 
order   b  given historical data. In this paper, we will illustrate our 
method by considering the situation of 1b = . The other situations can 
be derived by the same procedure. For illustration purpose, we rewrite 
the random-coefficient autoregressive model with time effect as the 
following form:

	 Y t Y nn n n n− = + −( ) + =−δ β ϕ δ ε0 1 0 1 2 3, , , ,... 	 (2)

From the model, we can observe that when ϕ ≠1 , the current 
state nY  depends on previous state n 1Y −  and age nt . To account for 
the heterogeneity among different individuals, assume β follows nor-
mal distribution with mean µβ  and variance σβ

2  , φ follows normal 
distribution with mean µϕ  and variance σβ

2  , and they have mutual 
covariance ρ. Therefore, the model of Eq.(2) has the model coeffi-

cients γ δ µ σ µ σ ρ σβ β ϕ ϕ= ( )0
2 2 2, , , , , , , which are unknown and need 

to be estimated.
To estimate the constant model coefficient δ0 , we set 

δ δ ϕ δ= −0 1 0 , then the model of Eq.(2) can be rewritten as:

	 Y t Y nn n n n= + + + =−δ β ϕ ε1 1 2 3, , , ,... 	 (3)

Assume that we have . M . histories of the system. For the  sth 
data history, we denote the number of inspections by sm , the observed 

system states by { }0 1 2 , , ,...,
s

s s s
my y y y  where  0y  is the same for all 

histories,  and the inspection times by  { }1 2, ,...,
s

s s s
mt t t ,  1,2,...,s M=  . 

So that for the M  observed data histories, we have the regression 
representation W VA E= + , where:
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The least squares estimates for A  is given by:

	 ( ) 1Â V V V W−′= ′ 	 (5)

Therefore,
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ϕ
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−
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Let 0, 1,2,3,...n nX Y nδ= − =  , the model of Eq.(2) can be trans-
formed into the following form:
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Next, we have to estimate the distribution of β and φ. Let  ˆ
sβ  and 

ˆsϕ  be the least squares estimates of parameter β and φ for each his-
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Using the least squares estimates ˆ
sβ   and ˆsϕ   of parameter β and 

φ for each history s , 1,2,...,s M=  , we are able to estimate the ex-
pected mean and stan- dard deviation of s

nX  conditioning on the ini-
tial degradation state 0X  for each data history, which are given by:
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Thus, let 0̂n nx y δ= − , the estimate of σ 2  is calculated using the 
following equation:
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The least squares estimates ˆ
sβ   and  ˆsϕ  for each history s , 

1,2,...,s M=   are given by:
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Using Eq.(4)-Eq.(13), the estimates of model coefficients

( )2 2 2 ,ˆ ˆˆ , , , ,ˆ ˆ ˆ ˆβ β ϕ ϕγ µ σ µ σ ρ σ=  are obtained.

3. The Bayesian framework for adaptive model param-
eters via real-time CM data

The estimation procedure presented in Section 2 obtains the value 
of model coefficients for the whole population given historical data. 
However, to estimate the model coefficients for a specific system, it is 
more desirable to use the real-time CM observations collected during 
the system operation. In this section, we will develop a Bayesian 
framework for the update of model coefficients. According to the 
model in Section 2, the stochastic parameter β ϕ,{ }  has the prior dis-

tribution of ( )2 2, , , , ,N β β ϕ ϕβ ϕ µ σ µ σ ρ∝ . The estimates 

{ }2 2 2, , , , ,ˆˆ ˆ ˆ ˆ ˆβ β ϕ ϕµ σ µ σ ρ σ  calculated by the procedure presented in 
Section 2 using historical data can be the prior estimates of 

{ }2 2 2, , , , ,β β ϕ ϕµ σ µ σ ρ σ .
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Then the joint posterior estimate of β and φ conditional on 1: rX  
is still normal resulted from the fact of the normal distribution as-
sumption of β and φ. In other words, 
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Using the conditional joint posterior distribution of β and φ, we  
are able to calculate the distribution of nX  given -1nX . In fact, nX  
follows a normal distribution with mean and variance given by:
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4. Residual life estimation and maintenance policy 
optimization

Our next goal is to determine the residual life of the operating sys-
tem and the optimal control-limit to initialize preventive replacement. 
Since φ is a random variable, the derivation of an analytical form for 
the mean residual life and the failure time distribution, is encountering 
a large amount of difficulties. Therefore, we hereby consider at first 
a Monte Carlo simulation-based approach which generates a large 
sample of deterministic degradation paths to approximate the residual 
life distribution. On the other hand, for the maintenance optimization 
problem, we consider the commonly-used control-limit policy (e.g., 
[15, 12, 23, 6]), by which the system will be preventively replaced 
if its observed degradation state exceeds a control-limit (optimized) 
and it is left operational until next inspection if its degradation level 
is below the control-limit. After preventive replacement or corrective 
replacement (perform when the system fails), the system will go back 
to as-good-as-new state 0Y . Since the model coefficients update as 
real-time condition monitoring data becomes available, the optimal 
control-limit to initialize preventive replacement may have to change 
as well. Therefore, the optimal control-limit is dynamic.

We develop an optimization algorithm based on SMDP frame-
work to obtain the dynamic control-limit, which is based on the algo-
rithm proposed in [23] for fixed control-limit situation. Moreover, we 
discover that using the SMDP framework, the mean residual life and 
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the dynamic optimal control-limit can be obtained simultaneously. To 
be specific, without any extra effort, the mean residual life can be 
obtained while calculating the optimal control-limit. It is interesting to 
find that the SMDP-based approach provides a novel way of calculat-
ing mean residual life, which is commonly considered as an approach 
only for policy decision problems. We will introduce this approach 
and discuss its advantages and disadvantages.

For both problems, we assume that failure occurs when the deg-
radation signal reaches some given failure threshold ξ. When the deg-
radation state nY  reaches the threshold ξ, the system is no longer as-
sumed to be able to function satisfactorily or safely and it should be 
correctively replaced, although no physical failure is observed. In this 
paper, we take the threshold value ξ  as fixed and known, and assume 
the failure should be discovered by equidistant inspections.

4.1.	 Revisited: residual life estimation in the situation of 
fixed model coefficients

Before describing our approaches, we first revisit the residual life 
estimation approach under the situation of fixed β and φ for compari-
son purposes (refer to [23] for more details).   For fixed β and φ,  the 
conditional expected mean and variance of nX  can be obtained by 
conditioning on previous observations 0 1, ,..., jX X X  for some inte-
ger j n< :

	

E X X t X

Var X X

f n j
r j

n
n r

r
n j

j

f n j
r

n j
r

( | )

( | ) .

= +

=

= +

− −

=

− −

∑

∑
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2

0
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Let ( | )T n jF t X  be the failure time distribution given the current 

observation jX , and it is calculated by:
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Thus, the mean residual life at a given time  jt jh=   can be cal-
culated by:

	
1

1
( | ) [ ( | ) ( | )] .n T n j T n j

n j
E T jh t F t X F t X jh

+∝

−
= +

= − −∑ 	 (21)

4.2.	 Monte Carlo simulation-based approach for residual life 
estimation

When both β and φ are random variables, it is difficult to derive 
analytically the failure time distribution ( | )T n jF t X , the conditional  
expected mean ( | )n jE X X  and variance ( | )n jVar X X . When there 
is no closed-form expression for the above distributions, one can 
evaluate their estimates to any desired degree of precision using Mon-
te Carlo simulation. This is done by generating a sufficiently large 
number of random sample paths from the assumed degradation model 
with the estimated coefficients. We use the following procedure:

Generate 1.	 U simulated realizations of β  and ϕ  from 

β ϕ µ σ µ σ ρβ β ϕ ϕ, | ~ , , , ,: , , , ,X Nj j j j j j1
2 2( ) , where U  is a 

large number (e.g., 100,000U = );

Given the current observation 2.	 jY  at inspection time jt jh= , 

generate simulated random errors ˆnε  from N 0 2,σ( ) . For 

each of the U  simulated paths, X Yn n= −δ0  for any n j>  is 

calculated by:

	 ( )

1 1 1

2 2 1 2

2 1 1 2

1
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 	 (22)

Then the residual life lT  for the l th simulated path is deter-
mined by:

	 ( ){ }0argmin 0l̂ n
n

T h X ξ δ= × − − ≥ 	 (23)

Compute the corresponding 3.	 ( | )T n jF t X  using U  simulated 

paths for any desired values of ,2 ,...nt h h=

	

number of( | ) l̂ n
T n j

T tF t X
U

≤
= 	 (24)

Calculate the mean residual life 4.	 ( | )E T jh  at current inspec-

tion time jt jh=  by Eq.(21).

4.3.	 SMDP-based approach for maintenance optimization 
and mean residual life estimation

We consider using a SMDP framework to optimize the dynamic 
maintenance policy based on the proposed random-coefficient autore-
gressive model with time effect. In this maintenance policy, three costs 
are required, which are, a cost of  PC  for a preventive replacement, 
a cost of FC  for a corrective replacement and a cost of ObsC  for an 
inspection; two replacement times are included, which are preven-
tive replacement time FT  and corrective replacement time PT . After 
these quantities are assigned, the economic consequence of using this 
maintenance policy can be reflected by the long-run expected average 
cost per unit time g .

The control-limit will be optimized each time when the model 
coefficients are updated using new available observations. Therefore, 
if new observations are available at inspection time nt nh= , the ob-
jective of the maintenance policy is to find the optimal control-limit 

*
nw   to determine whether a preventive replacement should be initial-

ized before next update of model coefficients, by minimizing the 
long-run expected average cost per unit time g . By renewal theory 
(see e.g.[20]), the cost minimization problem is equivalent to finding 
an optimal control-limit w yn

* ,∈( ]0 ξ  such that:
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	 ( )
( )
( )

( )
( )

* *

* *

* inf .n n

n n

w w
n

w w

E CC E CC
g w

E CL E CL
= = 	 (25)

where CL  and CC  denote the cycle length and cycle cost for the 
systems whole lifecycle,  respectively.

We surprisingly discover that the problem of estimating the mean 
residual life of the operating system can be incorporated into the prob-
lem of optimizing the dynamic control-limit.  That is, if the control-
limit nw  equals to the failure threshold ξ, wn = ξ , then the total 

length of the lifecycle CL  under this policy is the same as that with-
out any preventive policy.  The system will ultimately go to the failure 
state. Thus, FCL jh T− −  equals to the residual life estimated at 

jt jh= . Then the expected total length of the lifecycle 
( ) FE CL jh T− −  equals exactly to the mean residual life ( | )E T jh .

Since the system will ultimately fail, the expected total cost 
( )E CC  can be given by:

	 ( ) ( )
F Obs

E CL
E CC C C

h
= + 	 (26)

On the other hand, if the long-run expected average cost per unit 
time g  is known, ( )E CC  can also be calculated by:

	 ( ) ( )E CC gE CL= 	 (27)

Using Eq.(26) and Eq.(27), the residual life estimated at time 

jt jh=  is given by:

	
( )

( )

,

( | ) .

F

Obs

F

C hE CL
gh C

E T jh E CL jh T

=
−

= − −
	 (28)

Note that although the values of costs ,F ObsC C  and replacement 
times FT  are very important for maintenance optimization, for the 
residual life estimation, the costs and replacement times are interme-
diate quantities to obtain results. They can be set to any value.  No 
matter what values they have, the system will ultimately go failure 
(the lifecycle length won’t change) and have corrective maintenance. 
Therefore, when they change, the average cost g  changes accord-
ingly, which is given by ( ) ( )/E CC E CL .

Now the only remaining question for the residual life estimation 
problem is, how to calculate g  without knowing the exact value of
( ) E CL ? For the maintenance optimization problem, we develop a 

SMDP framework to calculate g  for each w Yn ∈( ]0,ξ  and decide 
the optimal *

nw  at inspection time  nt nh=  by the minimum *g . The 
whole searching procedure contains the situation of nw ξ= . Hence,  
we are able to obtain g  when the control-limit is nw ξ= , simultane-
ously with the searching procedure of optimal control-limit * nw  .

Next, we will describe in detail how to calculate g  using a SMDP 
framework and how to find the optimal dynamic control-limit *

nw  at 
each inspection time nt nh= . To develop this SMDP framework, 
firstly, the possible range of nY  is required to be discretized into a fi-
nite set of states. We define the state space as a combination of count-
able time points and value intervals. Denote the state space by 

( ),Ω = K H , where K  represents the discretized states of observed 
nY , and { }; 0,1,2,...nh n= =H  represents the inspection times. We 

set the possible smallest value of nY  by y y0 0 3' = − σ . Define 

ξ ,+ ∝[ )  as the failure state F , then we can divide the continuous 

state space of y0
' ,ξ



  into L  equidistant intervals with constant 

length ∆ = −( )ξ y L0
' / . For the maintenance policy, we define the 

control-limit nw  by k∆ , for some fixed integer 0 k L< < , then the 
warning state W  will be )' '

0 0,k y L y ∆ + ∆ + , and the healthy state 
S  will be )' '

0 0,y k y ∆ + .

Secondly, the quantities in the SMDP should be determined, 
which are one-step transition probabilities of degradation states, one-
step expected sojourn times and one-step expected costs. We also de-
fine an integer n  to be the total number of inspections for the system. 
If the system still operates without failure when the last inspection is 
performed, we will enforce a preventive replacement. The degrading 
system will surely be replaced before the last inspection if n  is large 
enough.

The one-step transition probabilities are calculated by Eq.(29), 
where 1( | )n nE X X+  and 1( | )n nStd X X+  are calculated by Eq.(18).
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The expected sojourn times for the SMDP are given by:

	

τ k n h k k n n, , , , , ; , , ,( ) = = … = … −0 1 0 1 1

τ F, , , ,...,n T n nF( ) = = 0 1 

τ τW, , , , ,..., ; , ,..., .n k n T k k n nP( ) = ( ) = = = 0 1 0 1

	 (30) 

Similarly, the expected costs for the SMDP are given by:
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, , , ,..., , ,...,
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0 1
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F ..,

, , , , ,..., , , ,..., .



 

n

c n c k n C k k n nPW( ) = ( ) = = =0 1 0 1and  

	 (31)

Therefore, at each inspection time jt jh= , with new available 
observation jY  and updated model parameters, the long-run expect-
ed average cost per unit time g wj( )  given the fixed control-limit  

jw k= ∆  can be obtained by solving the following system of linear 
equations:
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	 0,1,...,  and 1, 2,..., 1k k n j j n= = + + − 	
(32)

	
v n c n g w n v n j njW W W, , , , , , ,...,( ) = ( ) − ( ) ( ) + ( ) = +τ 0 0 1 2 

	
v n c n g w n v n j njW W W, , , , , , ,...,( ) = ( ) − ( ) ( ) + ( ) = +τ 0 0 1 2 

	 ( ) ( ), , , 0,1, ,                                                           v k n v n k k= = …W 

	 ( ) ( ), 0,  for an arbitrarilyselectedsinglestate ,                  v p q p q=

where ( )•,•v  is the so-called relative value function plus a constant 

and a=⌈a Y yj= −( )0
' / ∆ ⌉. The first equation in Eq.(32) indicates that af-

ter jt jh=  unit of time, the system runs from the initial state ( )0,0  
to the state of ( ),a j . The last equation in Eq.(32) guarantees that the 
solution to the system of linear equations in Eq.(32) is unique (see 
e.g.,[25]).

So that the optimal control-limit *
jw  at inspection time jt jh=  

and the corresponding minimum long-run expected average cost per 

unit time g wj
*( )  can be found by:

	 g w g wj
w y

j
j

*

,'( ) = ( ){ }
∈




inf
0 ξ

	 (33)

Since only a single admissible action in each state is possible for 
a given control-limit, it is not necessary to formally apply the whole 
policy iteration procedure. We are only interested in computing the 
long-run average cost per unit time for a given control limit policy, 
and we chose SMDP for the computation, because we can make ef-
ficient use of the linear equations in step 1 of the  policy  iteration 
algorithm.

5. Case study and discussions

In this section, we will conduct a comparative study to 
demonstrate our proposed method. To reveal the effective-
ness of the proposed random-coefficient autoregressive 
model with time effect, we will compare it with its fixed-
coefficient counterpart using the same case studied in [22]. 
We will also use this case to illustrate our proposed dynamic 
maintenance policy and the approach of estimating the mean 
residual life for a functioning system.

5.1.	 The degradation dataset

The dataset is a real laser degradation data set presented 
by [16] (Example 13.6). It consists of 13 degradation histo-
ries of GaAs lasers (see Fig.1). Over the life of these lasers, 
degradation causes a decrease in light output. However, the 
lasers contain a feedback mechanism that maintains nearly 
constant light output by increasing operating current as the 

laser degrades. When operating current gets too high, the laser is con-
sidered to have failed. In applications, experts consider the laser failed 
if the operating current increases to ξ percent of its original value 
(ξ  ≤ 10). To track the lasers degradation, in this data set, the operating 
currents were measured every 20h =  hours up to 4000 hours.

Fig. 1.	 Degradation paths in terms of the percent increase in operating cur-
rent for the GaAs laser data set coming from [16]

5.2.	 Estimation of model coefficients

To demonstrate the present random-coefficient model formation 
is preferable to the fixed-coefficient one proposed in [23], we firstly 
use the 13 degradation histories as the training data to estimate the 

model coefficients γ δ µ σ µ σ ρ σβ β ϕ ϕ= ( )0
2 2 2, , , , , , , using the two 

model formations respectively. According to the estimation procedure 
presented in Section 2 and in [23], we obtain the values of the model 
coefficients for both models, as listed in Table 1. Note that for the 
fixed-coefficient model, σβ

2 0= , σϕ
2 0= , and ρ = 0 .

In Fig.2, a graphical proof is presented to directly show the su-
periority of the random-coefficient model over the fixed-coefficient 
model in capturing the lasers degradation behavior. This figure shows 
simulated degradation paths of 30 lasers based on the estimates in 
Table 1. It can be observed that the simulated paths using the random-
coefficient model are very similar to the actual paths (refer to Fig.1). 
However, the simulated paths using the fixed-coefficient model are 
quite different, in that

The number of intersections in the actual paths is quite smaller 1.	
than that in the simulated paths.
The decreasing phases are less pronounced than that in the 2.	
simulated paths.
the variability of each path around its mean is quite smaller in 3.	
the actual paths than that in the simulated paths.

Table 1.	 Parameters estimation results using the data of the training 13 lasers.

Model coefficients Fixed-coefficient (refer to [23]) Random-coefficient

0̂δ 14.3722− 14.3722−

ˆβµ 51.4755 10−− × 51.4750 10−− ×

ˆβσ / 64.6099 10−×

ˆϕµ 1.0038 1.0038

ˆϕσ / 46.6884 10−×

ρ̂ / -0.9915

σ̂ 0.0636 0.0240
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Fig. 2.	 Simulated degradation paths of 30 GaAs lasers based on (a) random-
coefficient autoregressive model with time effect and (b) fixed-coeffi-
cient autoregressive model with time effect

All these differences indicate the heterogeneity does exist in this 
dataset and considering the model coefficient as random is more ap-
propriate. The model with fixed coefficients places all uncertainties 
on the parameter σ, whose value we can observe from Table 1 is 
quite larger than the one in random-coefficient model. This is why 
the fluctuations in Fig.2(b) are more and larger. Moreover, in Fig.3, 
the estimated mean and the standard deviation of the percent increase 
in operating current calculated by the random-coefficient model (us-
ing mean and standard deviation of 3000 simulated paths) are com-
pared with the corresponding empirical estimates calculated from the 
observed data. The results also indicate that the random-coefficient 
model fits well with this dataset.

5.3.	 Update of model coefficients using the Bayesian frame-
work

In order for the model coefficients to better accommodate a spe-
cific functioning laser, we use the Bayesian framework proposed in 
Section 3 to update the model coefficients once new observations are 
available. To demonstrate the advantages of this update procedure, 
we randomly select 4 degradation histories which relatively degrade 
slowly in the dataset as the training units, to estimate the initial values 
of the model coefficients. Then we select 1 degradation history which 
relatively degrades quickly in the dataset as the testing unit, assuming 
this unit is the functioning laser. The training units and the testing unit 
are plotted in Fig.4.

With the joint prior distribution of model coefficients {β, φ}, we 
are able to find the joint posterior distribution of {β, φ} for the func-
tioning laser any time we obtain a new observation, i.e., at any inspec-
tion time nt nh= . Fig.5 presents the evolution of the posterior means 
for β, and φ respectively, given the observation data from the testing 
unit. Given these posterior means, we can then compute the expected 
percent increase at the next sampling time using the following equa-
tion:

	 ( )1 , 1 0 0ˆ , 1 1( ) ˆ ˆˆ| ˆn n n n n nE Y Y t Yγ β ϕµ µ δ δ− − − −= + − + 	 (34)

Fig. 3.	 Curves of the estimated mean and standard deviation of the percent 
increase in operating current compared with the corresponding em-
pirical estimates

Fig.6 shows the observed and the expected percent increase in 
the operating current plotted against time for the testing unit.  The re-
sults show that using the Bayesian updating framework, the expected 
degradation path follows well with the actual degradation path. To  
demonstrate the advantages of using the Bayesian updating frame-
work, the root mean  squared error (RMSE) for the testing unit under 
the random-coefficient model with and without Bayesian updating 
procedure are calculated respectively, which is defined by Eq.(35). 
For the model without Bayesian updating procedure, the RMSE is 
0.0464, while for the model with Bayesian updating procedure, the 
RMSE is 0.0440. The results show that the Bayesian updating pro-
cedure increases the accuracy of predicting the degradation state of 
functioning laser.

	 2

1
ˆ1 1

1 [ ( | )]
Q

n n n
n

RMSE Y E Y Y
Q γ −

=
= −∑ 	 (35)

where 200Q =  is the total number of observations of the testing 
unit.

5.4. 	 Optimization of the dynamic maintenance policy

With the posterior estimates of model coefficients, we are able to 
find the dynamic control-limit to initialize preventive maintenance. 
To illustrate the whole optimization procedure, we use the 4 training 
units in Fig.4 to obtain the initial values of model coefficients. Then, 
the dynamic policy is optimized using the algorithm proposed in Sec-
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tion 4, with the help of real-time observations coming from the testing 
unit and the posterior estimates of model coefficients.

Suppose that the failure threshold is ξ = 4 . We determine the 
optimal control-limit every 20 inspections with the following re-
placement times and cost data: 20P FT T= =   hours, $3000FC = , 

$1000PC =  and $100ObsC = . We partition the continuous degrada-
tion interval Y0 0 4= =[ ],ξ  into 64 sub- intervals, and set the maxi-
mum number of inspections to ˆ 128n = . For every 20 inspections, 

that is, at inspection time nt nh= , 20,40,60,...n = , we obtain the 
minimum long-run expected average cost per hour g nω

*( )  with the 
corresponding optimal control-limit ωn

* . The dynamic optimal con-
trol-limit for the maintenance policy is shown in Fig.7. It reveals that 
for this dataset, the optimal control-limit neither shows a monotone 
nondecreasing trend as [6] and [24], nor shows a decreasing trend as 
[1]. It firstly decreases then raises back to its initial value. This going-
back control-limit seems to be a proof to doubt the significance of us-
ing this dynamic maintenance policy. However, from the behavior of 
the dynamic control-limit, we actually can see the increased urgency 
for preventive maintenance when degradation of the functioning laser 
begins  to deviate fast from the historical degradation paths (refer to 
Fig.4 to see the faster degradation of the testing unit). The following 
increased behavior of the control-limit can be explained by increased 
accuracy (less variability) in predicting the future degradation trend. 
Furthermore, this result only reflects the situation under current main-
tenance situation (maintenance costs, maintenance times and etc.).

Fig. 6.	 Expected and observed percent increase in operating current vs. time 
for the testing unit

Fig. 7.	 Optimization results of the dynamic control-limit

5.5.	 Real-time estimation of residual life

We then use the posterior means and variances of model coeffi-
cients to compute the mean residual life given observations obtained 
up to that point in time. We firstly use the Monte Carlo simulation-
based approach and make a comparison between the results obtained 
by the proposed random-coefficient model with Bayesian updating 
procedure and the fixed-coefficient model. The model coefficients are 
calculated using the training units presented in Fig.4 and updated by 
observations of the testing unit in Fig.4. We use the following RMSE 
to evaluate their performances:

Fig. 4.	 Degradation paths in terms of the percent increase in operating cur-
rent for the training units and the testing unit.

Fig. 5.	 Evolution of the posterior means for (a) β and (b) φ using the testing 
unit
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where E T jhtrue ( | ) and E T jh( | )  are true remaining time to ob-
serve failure at t jhj =  and expected mean residual life estimated 
at t jhj = , respectively, and Q  is the total number of observations 
before system failure.

The results of RMSE are: for the fixed-coefficient model, 
RMSE2 432= , while for the random-coefficient model with Bayesian 
updating procedure, RMSE2 427= . The results support that the ran-
dom-coefficient model with Bayesian updating procedure improves 
the performance of residual life estimation. To give a vivid impression 
of the results, we plot in Fig.8 the estimation results at each inspection 
time for both the fixed-coefficient model and the random-coefficient 
model with Bayesian updating procedure. The figure shows that al-
though the estimates of the residual life become more accurate with 
more available CM observations for both models, the random-coeffi-
cient model with Bayesian up-dating procedure seems to give more 
estimates which are closer to the true residual life, especially in the 
middle stage of the degradation.

Next, we present the procedure of using our proposed SMDP-
based approach to estimate the mean residual life. In this case study, 
with the process of optimizing the control-limit at inspection time 
t nhn = , n = 0 20 40 60, , , , we are able to obtain the mean residual life 
estimates given the observations up until tn  , using the long-run ex-
pected average cost per hour g nω( )  when ω ξn =  and the equations 
Eq.(26) - Eq.(28).  The results are shown in Table 2.  The true residual 
life and the estimated mean residual life obtained by Monte Carlo 
simulation-based approach are also listed in Table 2. It shows that the 
estimation results by SMDP-based approach are very close to the re-
sults obtained by Monte Carlo simulation-based approach, indicating 
that the SMDP-based approach for residual life estimation is reliable. 
The slight difference may due to the different approximation methods 
used in these two approaches.

Although the SMDP-based approach is feasible for residual life 
estimation, we still have to point out that it is only an approximate 
approach for residual life estimation and its computation cost is too 
large. It could estimate mean residual life simultaneously and quickly 
with the optimization process of the dynamic maintenance policy 
analyzed in this paper, but it is not an efficient approach if it is used 
independently. However, for a system using control-limit policy to 
conduct condition-based maintenance, engineers are more enthusias-
tic to know the system remaining time to the preventive control-limit 
than the system remaining time to failure. To approximately estimate 
the system remaining time to the control-limit, our proposed SMDP-
based approach provides a very direct and easy way, by using the re-

sults of the minimum long-run expected average cost per unit time .

6. Conclusion

In this paper, we have presented a dynamic CBM policy using ran-
dom-coefficient autoregressive model with time effect. This random-
coefficient autoregressive model with time effect has a more general 

formation than the fixed-coefficient counterpart ([23]) by consider-
ing stochastic behavior for both the age-dependent and the state-de-
pendent term.  Furthermore, a Bayesian approach for automatically 
updating the estimates of the stochastic coefficients is developed to 
combine information from a degradation database with real-time CM 
information. With the normal assumption for the prior distribution of 
those stochastic coefficients, the updates have explicit formulas. This 
implies that each update can be performed with a single computa-
tion, which leads to an extremely fast and simple updating procedure. 

We believe that the comparison results presented in Section 5 
clearly indicate the value of using the improved random-coef-
ficient autoregressive model with time effect and the Bayesian 
approach to incorporate real-time CM information.

The dynamic CBM policy is optimized using a SMDP 
framework. This optimization approach is based on [23] but 
surpasses it by considering real-time CM information. We have 
demonstrated through a case study of GaAs lasers that the dy-
namic control-limit maintenance policy is more sensitive to 

the urgency of preventive maintenance when the functioning system 
exhibits distinct difference from the degradation database. Moreover, 
using this SMDP framework, we have also explored the possibility of 
using SMDP to estimate mean residual life for a functioning system, 
for the first time in literature. The comparison between Monte Carlo 
simulation-based approach and the SMDP-based approach verifies the 
feasibility of the latter approach. However, we note that the computa-

Table 2.	 The results of mean residual life estimation using SMDP-based approach.

Inspection time (hours) 0 400 800 1200

True residual life 1280 900 500 100

Estimate in Fig.8(b) 2074 1450 456 98

Estimate using SMDP-based approach 2062 1499 464 135

Fig. 8.	 The actual remaining time to observe failure and the estimated mean 
residual life for the testing unit using (a) the fixed-coefficient autore-
gressive model with time effect and (b) the random-coefficient autore-
gressive model with time effect and Bayesian updating procedure
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tion cost of the SMDP-based approach hinders its independent appli-
cation in residual life estimation problems. Only when it is combined 
with optimization problems of dynamic maintenance policy could its 
efficiency be revealed. Further research topics include developing 

residual life distributions for this random-coefficient autoregressive 
model and exploring more dynamic CBM policies based on this mod-
el.  Extension of the model to describe and control partially observ-
able degrading processes with soft failures is also a suitable one.

References

1. Benyamini Z, Yechiali U. Optimality of control limit maintenance policies under nonstationary deterioration. Probability in the Engineering 
and Informational Sciences 1999; 13(1): 55–70, https://doi.org/10.1017/S026996489913105X.

2. Bergquist B, Soderholm P. Data analysis for condition-based railway in- frastructure maintenance. Quality & Reliability Engineering 
International 2015; 31(5): 773-781, https://doi.org/10.1002/qre.1634.

3. Besnard F, Bertling L. An approach for condition-based maintenance opti mization applied to wind turbine blades. IEEE Transactions on 
Sustainable Energy 2010; 1(2): 77–83, https://doi.org/10.1109/TSTE.2010.2049452.

4. Chen D, Trivedi K S. Optimization for condition-based maintenance with semi-Markov decision process. Reliability Engineering & System 
Safety 2005; 90(1): 25–29, https://doi.org/10.1016/j.ress.2004.11.001.

5. Chen N, Ye Z S, Xiang Y, Zhang L. Condition-based maintenance using the inverse Gaussian degradation model. European Journal of 
Operational Research 2015; 243(1): 190–199, https://doi.org/10.1016/j.ejor.2014.11.029.

6. Elwany A H, Gebraeel N Z, Maillart L M. Structured replacement policies for components with complex degradation processes and dedicated 
sensors. Operations research. 2011; 59(3): 684–695, https://doi.org/10.1287/opre.1110.0912.

7. Gebraeel N Z, Pan J. Prognostic degradation models for computing and updating residual life distributions in a time-varying environment. 
IEEE Transactions on Reliability 2008; 57(4): 539–550, https://doi.org/10.1109/TR.2008.928245.

8. Giorgio M, Guida M, Pulcini G. A new class of Markovian processes for deteriorating units with state dependent increments and covariates. 
IEEE Transactions on Reliability 2015; 64(2): 562–578, https://doi.org/10.1109/TR.2015.2415891.

9. Giorgio M, Guida M, Pulcini G. An age-and state-dependent Markov model for degradation processes. IIE Transactions 2011; 43(9): 621–
632, https://doi.org/10.1080/0740817X.2010.532855.

10. Giorgio M, Pulcini G. A new state-dependent degradation process and related model misidentification problems. European Journal of 
Operational Research 2018; 267, https://doi.org/10.1016/j.ejor.2017.12.038.

11. Jiang R, Yu J, Makis V. Optimal Bayesian estimation and control scheme for gear shaft fault detection. Computers & Industrial Engineering 
2012; 63(4): 754–762, https://doi.org/10.1016/j.cie.2012.04.015.

12. Kaiser K A, Gebraeel N Z. Predictive maintenance management using sensor-based degradation models. IEEE Transactions on Systems, 
Man, and Cybernetics-Part A: Systems and Humans 2009; 39(4): 840–849, https://doi.org/10.1109/TSMCA.2009.2016429.

13. Kim M J, Jiang R, Makis V, Lee CG. Optimal Bayesian fault prediction scheme for a partially observable system subject to random failure. 
European Journal of Operational Research. 2011; 214(2): 331–339, https://doi.org/10.1016/j.ejor.2011.04.023.

14. Kim M J, Makis V. Optimal maintenance policy for a multi-state deteriorating system with two types of failures under general repair. 
Computers & Industrial Engineering 2009; 57(1): 298–303, https://doi.org/10.1016/j.cie.2008.11.023.

15. Lin D, Wiseman M, Banjevic D, Jardine A K S. An approach to signal processing and condition-based maintenance for gearboxes subject to 
tooth failure. Mechanical Systems and Signal Processing 2004; 18(5): 993–1007, https://doi.org/10.1016/j.ymssp.2003.10.005.

16. Meeker W Q, Escobar L A. Statistical methods for reliability data. John Wiley & Sons 2014.
17. Moghaddass R, Zuo M J. An integrated framework for online diagnostic and prognostic health monitoring using a multistate deterioration 

process. Reliability Engineering & System Safety 2014; 124: 92–104, https://doi.org/10.1016/j.ress.2013.11.006.
18. Papakonstantinou K G, Shinozuka M. Planning structural inspection and maintenance policies via dynamic programming and Markov 

processes. Part I: Theory. Reliability Engineering & System Safety 2014; 130: 202–213, https://doi.org/10.1016/j.ress.2014.04.005.
19. Papakonstantinou K G, Shinozuka M. Planning structural inspection and maintenance policies via dynamic programming and Markov 

processes. Part II: POMDP implementation. Reliability Engineering & System Safety 2014; 130: 214–224, https://doi.org/10.1016/j.
ress.2014.04.006.

20. Ross SM. Introduction to probability models. Academic press 2014.
21. Si X S, Wang W, Hu C H, Zhou D H, Pecht MG. Remaining useful life estimation based on a nonlinear diffusion degradation process. IEEE 

Transactions on Reliability 2012; 61(1): 50–67, https://doi.org/10.1109/TR.2011.2182221.
22. Si X S, Wang W, Hu C H, Zhou D H. Estimating remaining useful life with three-source variability in degradation modeling. IEEE Transactions 

on Reliability 2014; 63(1): 167–190, https://doi.org/10.1109/TR.2014.2299151.
23. Tang D, Makis V, Jafari L, Yu J. Optimal maintenance policy and residual life estimation for a slowly degrading system subject to condition 

monitoring. Reliability Engineering & System Safety 2015; 134: 198–207, https://doi.org/10.1016/j.ress.2014.10.015.
24. Tang D, Yu J. Optimal replacement policy for a periodically inspected system subject to the competing soft and sudden failures. Eksploatacja 

i Niezawodnosc - Maintenance and Reliability 2015; 17 (2): 228-235, http://dx.doi.org/10.17531/ein.2015.2.9.
25. Tijms H C. Stochastic models. John Wiley and sons 1994.
26. Van Noortwijk J M. A survey of the application of gamma processes in maintenance. Reliability Engineering & System Safety 2009; 94(1): 

2–21, https://doi.org/10.1016/j.ress.2007.03.019.
27. Zhang Z X, Si X S, Hu C H. An age- and state-dependent nonlinear prognostic model for degrading systems. IEEE Transactions on Reliability 

2015; 64(4): 1214–1228, https://doi.org/10.1109/TR.2015.2419220.
28. Zhao X, Fouladirad Mi, Berenguer C, Bordes L. Condition-based inspection/ replacement policies for non-monotone deteriorating systems 

with environmental covariates. Reliability Engineering & System Safety 2010; 95(8): 921–934, https://doi.org/10.1016/j.ress.2010.04.005.

Acknowledgement
We would like to thank the National Natural science Foundation of China (Grant No. 71701008) for supporting this research.



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 20, No. 4, 2018 601

Science and Technology

Diyin Tang
Wubin Sheng
Jinsong Yu
School of Automation Science and Electrical Engineering
Beihang University
Beijing, China, 100191

E-mail: tangdiyin@buaa.edu.cn, shengwubin@buaa.edu.cn, 
yujs@buaa.edu.cn

29. Zhou Y, Huang M. Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA 
model. Microelectronics Reliability 2016; 65: 265–273, https://doi.org/10.1016/j.microrel.2016.07.151.


