PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chłodzenie adsorpcyjne z wykorzystaniem złóż fluidalnych

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Jednym z perspektywicznych rozwiązań dla branży chłodniczej jest chłodzenie wykorzystujące zjawisko adsorpcji. Technologia ta umożliwia ograniczenie zużycia energii w chłodnictwie, które w znacznej mierze odpowiada za rosnącą globalną konsumpcję energii. Przedmiotem artykułu jest analiza możliwości rozwoju technologii adsorpcyjnych. Głównym ograniczeniem chłodziarek adsorpcyjnych jest niska intensywność wymiany ciepła i masy w złożu, co prowadzi do niskiej wydajności, a w konsekwencji problemów z komercjalizacją tego rozwiązania. Głównym celem opracowania jest analiza możliwości poprawy transportu ciepła i masy w złożu adsorpcyjnym poprzez zastosowanie złoża fluidalnego. W pracy poddano dyskusji różne stosowane obecnie w przemyśle konstrukcje złóż fluidalnych i oceniono je pod względem możliwości aplikacji w chłodziarkach adsorpcyjnych. Przeanalizowano działanie chłodziarki adsorpcyjnej z czynnikiem pośredniczącym, jak i zapewniającej chłodzenie bezpośrednie. Po przeglądzie dostępnych danych literaturowych przedstawiono możliwości oraz potencjalne ograniczenia związane z rozwojem tej technologii. Ponadto wskazano przypuszczalny kierunek prowadzenia badań doświadczalnych, który obejmuje mechaniczne mieszanie materiału w złożu.
Rocznik
Tom
Strony
17--38
Opis fizyczny
Bibliogr. 58 poz., rys., tab.
Twórcy
autor
  • AGH Akademia Górniczo-Hutnicza, Katedra Maszyn Cieplnych i Przepływowych
autor
  • AGH Akademia Górniczo-Hutnicza, Katedra Maszyn Cieplnych i Przepływowych
autor
  • AGH Akademia Górniczo-Hutnicza, Katedra Maszyn Cieplnych i Przepływowych
Bibliografia
  • [1] International Energy Agency, World Energy Balances 2019, World Energy Balances: Overview 2019.
  • [2] Streck C., von Unger M., Krämer N., From Paris to Katowice: Cop-24 tackles the Paris rulebook, Journal for European Environmental and Planning Law 2019, 16(2), 165-190. DOI: 10.1163/18760104-01602005.
  • [3] Freni A., Sapienza A., Glaznev I.S., Aristov Y.I., Restuccia G., Experimental testing of a lab-scale adsorption chiller using a novel selective water sorbent “silica modified by calcium nitrate”, International Journal of Refrigeration 2010, 35(3), 518-524. DOI: 10.1016/j.ijrefrig.2010.05.015.
  • [4] Restuccia G., Freni A., Vasta S., Aristov Y., Selective water sorbent for solid sorption chiller : experimental results and modelling, International Journal of Refrigeration 2004, 27, 284-293. DOI: 10.1016/j.ijrefrig.2003.09.003.
  • [5] Daou K., Wang R.Z., Yang G.Z., Xia Z.Z., Theoretical comparison of the refrigerating performances of a CaCl 2 impregnated composite adsorbent to those of the host silica gel, International Journal of Thermal Sciences 2008, 47, 68-75. DOI: 10.1016/j.ijthermalsci.2007.01.003.
  • [6] Jalil E., Goudarzi K., Effect of adsorbent con fi guration on performance enhancement of continuous solar adsorption chiller with four quadric parabolic concentrators, Renewable Energy 2020, 158, 360-369. DOI: 10.1016/j.renene.2020.05.138.
  • [7] Pan Q., Peng J., Wang R., Experimental study of an adsorption chiller for extra lowtemperature waste heat utilization, Applied Thermal Engineering 2019, 163, 114341, 1-8. DOI: 10.1016/j.applthermaleng.2019.114341.
  • [8] Saha B.B., Akisawa A., Kashiwagi T., Silica gel water advanced adsorption refrigeration cycle, Energy1997, 22(4), 437-447. DOI: 10.1016/S0360-5442(96) 00102-8.
  • [9] Rogala Z., Adsorption chiller using flat-tube adsorbers - Performance assessment, Applied Thermal Engineering 2017, 121, 431-442. DOI: 10.1016/j.applthermaleng.2017.04.059.
  • [10] Elsheniti M.B., Elsamni O.A., Al-dadah R.K., Mahmoud S., Elsayed E., Saleh K., Adsorption refrigeration technologies, Sustainable Air Conditioning Systems 2018, 72-95. DOI: 10.5772/intechopen.73167.
  • [11] Glück C., Generische Simulationsmodelle für Sorptionswärmepumpen zum Heizen und Kühlen, Karlsruhe 2015.
  • [12] Rezk A., Al-Dadah R.K., Mahmoud S., Elsayed A., Effects of contact resistance and metal additives in finned-tube adsorbent beds on the performance of silicagel/water adsorption chiller, Applied Thermal Engineering 2012, 53, 278-284. DOI: 10.1016/j.applthermaleng.2012.04.008.
  • [13] Wang Q., Gao X., Xu J.Y., Maiga A.S., Chen G.M., Experimental investigation on a fluidized-bed adsorber/desorber for the adsorption refrigeration system, International Journal of Refrigeration 2012, 35(3), 694-700. DOI: 10.1016/j.ijrefrig.2011.05.020.
  • [14] Szyc M., Nowak W., Analysis of cooling cycle in single-stage adsorption chiller, Polish Journal of Environmental Studies 2014, 23(4), 1423-1426.
  • [15] Wang R., Wang L., Wu J., Adsorption refrigeration technology. Theory and application, Singapore 2014.
  • [16] Tatlier M., Performances of MOF vs. zeolite coatings in adsorption cooling applications, Applied Thermal Engineering 2017, 113, 290-297. DOI: 10.1016/j.applthermaleng.2016.10.189.
  • [17] Grabowska K., Krzywanski J., Nowak W., Wesolowska M., Construction of an innovative adsorbent bed configuration in the adsorption chiller - Selection criteria for effective sorbent-glue pair, Energy 2018, 151, 317-323. DOI: 10.1016/j.energy.2018.03.060.
  • [18] Calabrese L., Brancato V., Bonaccorsi L., Frazzica A., Caprì A., Freni A., Proverbio E., Development and characterization of silane-zeolite adsorbent coatings for adsorption heat pump applications, Applied Thermal Engineering 2017, 116, 364-371. DOI: 10.1016/j.applthermaleng.2017.01.112.
  • [19] Bahrehmand H., Khajehpour M., Bahrami M., Finding optimal conductive additive content to enhance the performance of coated sorption beds: An experimental study, Applied Thermal Engineering 2018, 143, 308-315. DOI: 10.1016/j.applthermaleng.2018.07.115.
  • [20] Ilis G.G., Demir H., Mobedi M., Saha B.B., A new adsorbent bed design: Optimization of geometric parameters and metal additive for the performance improvement, Applied Thermal Engineering 2019, 162, 114270, 1-12. DOI: 10.1016/j.applthermaleng.2019.114270.
  • [21] Alelyani S.M., Bertrand W.K., Zhang Z., Phelan P.E., Experimental study of anevacuated tube solar adsorption cooling module and its optimal adsorbent bed design, Solar Energy 2020, 211, 183-191. DOI: 10.1016/j.solener.2020.09.044.
  • [22] Horibe A., Sukmawaty, Haruki N., Hiraishi D., Continuous sorption and desorption of organic sorbent powder in two connected fluidized beds, Journal of Thermal Science and Technology 2012, 7(4), 563-576. DOI: 10.1299/jtst.7.563.
  • [23] He Z., Huang H., Yuan H., Kobayashi N., Study and theoretical calculation on new type of adsorption chiller, Applied Mechanics and Materials 2016, 291-294, 1867-1873. DOI: 10.4028/www.scientific.net/AMM.291-294.1867.
  • [24] Wang D., Zhang J., Tian X., Liu D., Sumathy K., Progress in silica gel-water adsorption refrigeration technology, Renewable and Sustainable Energy Reviews 2014, 30, 85-104. DOI: 10.1016/j.rser.2013.09.023.
  • [25] Khan M.Z.I., Saha B.B, Alam K.C.A., Akisawa A., Kashiwagi T., Study on solar/waste heat driven multi-bed adsorption chiller with mass recovery, Renewable Energy 2007, 32(3), 365-381. DOI: 10.1016/j.renene.2006.02.003.
  • [26] Khan M.Z.I., Alam K.C.A., Saha B.B., Akisawa A., Kashiwagi T., Performance evaluation of multi-stage, multi-bed adsorption chiller employing re-heat scheme, Renewable Energy 2008, 33(1), 88-98. DOI: 10.1016/j.renene.2007.01.012.
  • [27] Chahbani M.H., Labidi J., Paris J., Modeling of adsorption heat pumps with heat regeneration, Applied Thermal Engineering 2004, 24, 431-447. DOI: 10.1016/ j.applthermaleng.2003.08.012.
  • [28] Chen C.H., Ma S.S., Wu P.H., Chiang Y.C., Chen S.L., Adsorption and desorption of silica gel circulating fluidized beds for air conditioning systems, Applied Energy 2015, 155, 708-718. DOI: 10.1016/j.apenergy.2015.06.041.
  • [29] Xie Y., Liu Y., Li L., Xu C., Li B., Simulation of different gas-solid flow regimes using a drag law derived from lattice Boltzmann simulations, The Journal of Computational Multiphase Flows 2018, 10(4), 202-214. DOI: 10.1177/1757482X18765383.
  • [30] Girimonte R., Formisani B., Testa F., Adsorption of CO 2 on a confined fluidized bed of pelletized 13X zeolite, Powder Technology 2017, 311, 9-17. DOI: 10.1016/j.powtec.2017.01.033.
  • [31] Hamed A., Theoretical and experimental study on the transient adsorption characteristics of a vertical packed porous bed, Renewable Energy 2002, 27(4), 525-541. DOI: 10.1016/S0960-1481(01)00112-4.
  • [32] Song X., Wang Z., Jin Y., Tanaka Z., Gas-solids circulating fluidization in a packed bed, Powder Technology 1995, 83(2), 127-131. DOI: 10.1016/0032-5910(94)02948-N.
  • [33] Girimonte R., Vivacqua V., The expansion process of particle beds fluidized in the voids of a packing of coarse spheres, Powder Technology 2011, 213(1), 63-69. DOI: 10.1016/j.powtec.2011.07.006.
  • [34] Mandal D., Sharma V.K., Pant H.J., Sathiyamoorthy D., Vinjamur M., Quality of fluidization in gas-solid unary and packed fluidized beds: An experimental study using gamma ray transmission technique, Powder Technology 2012, 226, 91-98. DOI: 10.1016/j.powtec.2012.04.022.
  • [35] Mandal D., Sathiyamoorthy D., Vinjamur M., Experimental investigation of heat transfer in gas-solid packed fluidized bed, Powder Technology 2013, 246, 252-268. DOI: 10.1016/j.powtec.2013.04.054.
  • [36] Mandal D., Vinjamur M., Sathiyamoorthy D., Hydrodynamics of beds of small particles in the voids of coarse particles, Powder Technology 2013, 235, 256-262. DOI: 10.1016/j.powtec.2012.10.029.
  • [37] Chiang Y.C., Chen C.H., Chiang Y.C., Chen S.L., Circulating inclined fluidized beds with application for desiccant dehumidification systems, Applied Energy 2016, 175, 199-211.DOI: 10.1016/j.apenergy.2016.05.009.
  • [38] Sutkar V.S., Deen N.G., Kuipers J.A.M., Spout fluidized beds: Recent advances in experimental and numerical studies, Chemical Engineering Science 2013, 86, 124-136. DOI: 10.1016/j.ces.2012.06.022.
  • [39] Valverde Millan J.M., Fluidization of fine powders: cohesive versus dynamical ag-gregation, Springer, 2015.
  • [40] Suzuki K., Hosaka H., Yamazaki R., Jimbo G., Drying characteristics of particles in a constant drying rate period in vibro-fluidized bed, Journal of Chemical Engineering of Japan 1980, 13(2), 117-122. DOI:10.1252/jcej.13.117.
  • [41] Lehmann S.E., Hartge E.U., Jongsma A., deLeeuw I.M., Innings F., Heinrich S.,Fluidization characteristics of cohesive powders in vibrated fluidized bed drying at low vibration frequencies, Powder Technology 2019, 357, 54-63. DOI: 10.1016/j.powtec.2019.08.105.
  • [42] Mohideen M.F., Md Seri S., Raghavan V.R., Fluidization of Geldart Type-D particles in a swirling fluidized bed, Applied Mechanics and Materials 2012, 110-116, 3720-3727. DOI: 10.4028/www.scientific.net/AMM.110-116.3720.
  • [43] Hamed A.M., Experimental investigation on the adsorption/desorption processes using solid desiccant in an inclined-fluidized bed, Renewable Energy 2005, 30(12), 1913-1921. DOI: 10.1016/j.renene.2005.01.001.
  • [44] Rogala Z., Kolasinski P., Błasiak P., The influence of operating parameters on adsorption/desorption characteristics and performance of the fluidised desiccant cooler, Energies 2018, 11(6), 1-16. DOI: 10.3390/en11061597.
  • [45] Rogala Z., Kolasiński P., Gnutek Z., Modelling and experimental analyzes on air-fluidised silica gel-water adsorption and desorption, Applied Thermal Engineering 2017, 127, 950-962. DOI: 10.1016/j.applthermaleng.2017.07.122.
  • [46] Reichhold A., Hofbauer H., Internally circulating fluidized bed for continuous adsorption and desorption, Chemical Engineering and Processing, 1995. DOI: 10.1016/0255-2701(95)00623-0.
  • [47] Chen C.H., Schmid G., Chan C.T., Chiang Y.C., Chen S.L., Application of silica gel fluidised bed for air-conditioning systems, Applied Thermal Engineering 2015, 89, 229-238. DOI: 10.1016/j.applthermaleng.2015.05.058.
  • [48] Sahoo P., Sahoo A., Fluidization and spouting of fine particles: A comparison, Advances in Materials Science and Engineering 2013, 2013, 369380, 1-7. DOI: 10.1155/2013/369380.
  • [49] Cocco R., Karri S.B.R., Knowlton T., Introduction to fluidization, Chemical Engineering Progress 2014, 110(11), 21-29.
  • [50] Hamed A.M., Abd El Rahman W.R., El-Eman S.H., Experimental study of the transient adsorption/desorption characteristics of silica gel particles in fluidized bed, Energy 2010, 35, 2468-2483. DOI: 10.1016/j.energy.2010.02.042.
  • [51] Zhang H.L, Baeyens J., Degrève J., Brems A., Dewil R., The convection heat transfer coefficient in a Circulating Fluidized Bed (CFB), Advanced Powder Technology 2014, 25, 710-715. DOI: 10.1016/j.apt.2013.10.018.
  • [52] Solnordal C.B., Kenche V., Hadley T.D., Feng Y., Witt P.J., Lim K.S., Simulation of an internally circulating fluidized bed using a multiphase particle-in-cell method, Powder Technology 2015, 274, 123-134. DOI: 10.1016/j.powtec.2014.12.045.
  • [53] Herce C., Cortés C., Stendardo S., Numerical simulation of a bubbling fluidized bed reactor for sorption-enhanced steam methane reforming under industrially relevant conditions: Effect of sorbent (dolomite and CaO-Ca12Al14O33) and operational parameters, Fuel Processing Technology 2019, 186, 137-148. DOI: 10.1016/j.fuproc.2019.01.003.
  • [54] Doroodchi E., Fletcher D.F., Galvin K.P., Influence of inclined plates on the expansion behaviour of particulate suspensions in a liquid fluidised bed, Chemical Engineering Science 2004, 59(17), 3559-3567. DOI: 10.1016/j.ces.2004.05.020.
  • [55] Zhang W., Liu H., Sun C., Drage T.C., Snape C.E., Performance of polyethyleneimine-silica adsorbent for post-combustion CO2 capture in a bubbling fluidized bed, Chemical Engineering Journal 2014, 251, 293-303. DOI: 10.1016/ j.cej.2014.04.063.
  • [56] Krzywanski J., Grabowska K., Sosnowski M., Zylka A., Kulakowska A., Czakiert T., Sztekler K., Wesolowska M., Nowak W., Heat transfer in fluidized and fixed beds of adsorption chillers, E3S Web of Conferences, Nov. 2019, 128, 01003, 1-4. DOI: 10.1051/e3sconf/201912801003.
  • [57] Zarekar S., Bück A., Jacob M., Tsotsas E., Numerical study of the hydrodynamics of fluidized beds operated under sub-atmospheric pressure, Chemical Engineering Journal 2019, 372, 1134-1153. DOI: 10.1016/j.cej.2019.04.159.
  • [58] Llop M.F., Madrid F., Arnaldos J., Casal J., Fluidization at vacuum conditions. A generalized equation for the prediction of minimum fluidization velocity, Chemical Engineering.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d428c18-2db3-447a-9fb2-739e8563df8c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.