PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Proposal of the hybrid solution to determining the selected fracture parameters for SEN(B) specimens dominated by plane strain

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, new hybrid (numerical-analytical) methods to calculate the J-integral, the CTOD, and the load line displacement are presented. The proposed solutions are based on FEM calculations which were done for SEN(B) specimens dominated by plane strain condition. The paper includes the verification of the existing limit load solution for SEN(B) specimen with proposal of the new analytical formulae, which were used for building hybrid equations for determining three selected fracture mechanics parameters.
Rocznik
Strony
523--532
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, 7 Tysiąclecia Państwa Polskiego Ave., 25-314 Kielce, Poland
Bibliografia
  • [1] J.W. Hutchinson, “Singular behaviour at the end of a tensile crack in a hardening material”, Journal of the Mechanics and Physics of Solids 16 (1), 13–31 (1968).
  • [2] J.R. Rice and G.F. Rosengren, “Plane strain deformation near a crack tip in a power-law hardening material”, Journal of the Mechanics and Physics of Solids 16 (1), 1–12 (1968).
  • [3] M. Graba, “The hybrid method for determination of elastic-plastic fracture mechanics parameters for SEN(B) specimens”, 25th Anniversary International Conference on Metallurgy and Materials, (2016).
  • [4] M. Graba, Numerical Analysis of the Mechanical Fields Near the Crack Tip in the Elastic-Plastic Materials. 3D Problems, PhD dissertation, Faculty of Mechatronics and Machine Building, Kielce University of Technology, Kielce, 2009, (in Polish).
  • [5] N.P. O’Dowd and C.F. Shih, “Family of crack-tip fields characterized by a triaxiality parameter – I. structure of fields”, J. Mech. Phys. Solids 39 (8), 989–1015 (1991).
  • [6] A. Neimitz, M. Graba, and J. Gałkiewicz, “An alternative formulation of the Ritchie-Knott-Rice local fracture criterion”, Engineering Fracture Mechanics 74 (8), 1308–1322 (2007).
  • [7] M. Graba, “The proposal of three-parametric fracture criterion of brittle materials”, Przegląd Mechaniczny 2/2012, 24–31 (2012), (in Polish).
  • [8] M. Graba, “Verification of hybrid solutions to estimate the J-integral according to the EPRI procedures for the selected geometry”, Proc. XXIV Symposium on Fatigue and Fracture Mechanics, (2012), (in Polish).
  • [9] V. Kumar, M.D. German, and C.F. Shih, An Engineering Approach for Elastic-Plastic Fracture Analysis, Electric Power Research Institute, Palo Alto, CA, 1981.
  • [10] M. Graba and J. Gałkiewicz, “Influence of the crack tip model on results of the finite element method”, Journal of Theoretical and Applied Mechanics 45 (2), 225–237 (2007).
  • [11] W. Brocks, A. Cornec, and I. Scheider, Computational Aspects of Nonlinear Fracture Mechanics, pp. 127–209, GKSS-Forschungszentrum, Geesthacht, 2003.
  • [12] W. Brocks and I. Scheider, Reliable J-Values. Numerical Aspects of the Path-Dependence of the J-integral in Incremental Plasticity, pp. 127–209, GKSS-Forschungszentrum, Geesthacht, 2003.
  • [13] A. Neimitz, I. Dzioba, M. Graba, and J. Okrajni, The Assessment of the Strength and Safety of the Operation High Temperature Components Containing Cracks, Kielce University of Technology Publishing House, Kielce, 2008, (in Polish).
  • [14] Structural Integrity Assessment Procedures for European Industry. Final Procedure, Brite-Euram Project No. BE95‒1426, British Steel, Rotherham, 1999.
  • [15] FITNET: European Fitness-for-service Network, FITNET report contract No. G1RT-CT-2001‒05071, eds. M. Kocak, S. Webster, J.J. Janosch, R.A. Ainsworth, and R.Koers, (2006).
  • [16] Test Method for Determining the Fracture Toughness – the Critical Value of J-Integral – JIC, PN-88/H-04336, Polish Committee for Standardization, Metrology and Quality, 1988, (in Polish).
  • [17] Standard Test Method for Measurement of Fracture Toughness, ASTM E 1820‒05, American Society for Testing and Materials, 2005.
  • [18] PN-EN 1993 Eurocode 3: Stell Construction, 1993, (in Polish).
  • [19] H. Tada, P.C. Paris, and G.R. Irwin, The Stress Analysis of Cracks Handbook, Del Research Corporation, Hellertown, PA, 1973.
  • [20] S. Chauhan, J. Chattopadhyay, and B.K. Dutta, “Limit load equations for miniature single edge notched tensile specimens”, Transactions of the Indian Institute of Metals 69 (2), 641–646 (2016).
  • [21] Y. Shi, S. Sun, H. Murakawa, and Y. Ueda, “Finite element analysis on relationships between the J-integral and CTOD for stationary cracks in welded tensile specimens”, International Journal of Pressure Vessels and Piping 75, 197–202 (1998).
  • [22] X.-K. Zhu, J.A. Joyce, “Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization”, Engineering Fracture Mechanics 85, 1–46 (2012).
  • [23] C. Ruggieri, “Further results in J and CTOD estimation procedures for SE(T), fracture specimens – Part I: Homogeneous materials”, Engineering Fracture Mechanics 79, 245–265 (2012).
  • [24] M. Parades and C. Ruggieri, “Further results in J and CTOD estimation procedures for SE(T) fracture specimens – Part II: Weld centerline cracks”, Engineering Fracture Mechanics 89, 24–39 (2012).
  • [25] Y. Huang and W. Zhou, “J-CTOD relationship for clamped SE(T) specimens based on three-dimensional finite element analyses”, Engineering Fracture Mechanics 131, 643–655 (2014).
  • [26] K. Han, J. Shuai, X. Deng, L. Kong, X. Zhao, and M. Sutton, “The effect of constraint on CTOD fracture toughness of API X65 steel”, Engineering Fracture Mechanics 124–125, 167–181 (2014).
  • [27] T. Tagawa, et. al, “A new CTOD calculation formula, considering strain-hardening property”, Procedia Materials Science 3, 772–777 (2014).
  • [28] M. Palombo, S. Sandon, and M. De Marco, “An evaluation of size effect in CTOD-SENB fracture toughness tests”, Procedia Materials Science 109, 55‒64 (2015).
  • [29] D.F.B. Sarzosa, R.F. Souza, and C. Ruggieri, “J–CTOD relations in clamped SE(T) fracture specimens including 3-D stationary and growth analysis”, Engineering Fracture Mechanics 147, 331–354 (2015).
  • [30] E. Wang, W. De Waele, and S. Hertelé, “A complementary ηpl approach in J and CTOD estimations for clamped SENT specimens”, Engineering Fracture Mechanics 147, 36–54 (2015).
  • [31] F.V. Antunes, S.M. Rodrigues, R. Branco, and D. Camas, “A numerical analysis of CTOD in constant amplitude fatigue crack growth”, Theoretical and Applied Fracture Mechanics 85, 45–55 (2016).
  • [32] “ADINA: User interface command reference manual”, vol. 1, Report ARD 11‒2, 2011.
  • [33] ADINA: Theory and modeling guide, vol. 1, Report ARD 11‒8, 2011.
  • [34] C.F. Shih, “Relationship between the J-integral and the crack opening displacement for stationary and extending cracks”, Journal of the Mechanics and Physics of Solids 29, 305–329 (1981).
  • [35] Y.J. Chao, X.K. Zhu, Y. Kim, P.S. Lar, M.J. Pechersky, and M.J. Morgan, “Characterization of crack-tip field and constraint for bending specimens under large-scale yielding”, International Journal of Fracture 127, 283–302 (2004).
  • [36] M. Graba, “The influence of material properties and crack length on the Q-stress value near the crack tip for elastic-plastic materials for centrally cracked plate in tension”, Journal of Theoretical and Applied Mechanics 50 (1), 23–46 (2012).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d40b88d-aa91-4677-88bd-9ac7675b6624
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.