PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Indium-gallium-zinc oxide thin-film preparation via single-step radio frequency sputter deposition using mixed-oxide powder targets

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Indium gallium zinc oxide (In–Ga–Zn–O) thin films, which are transparent conductive films for liquid crystals and electroluminescent displays, were fabricated via singlestep sputter deposition using one target containing different proportions of indium oxide, gallium oxide, and zinc oxide powders. Experimental results suggest that the In–Ga–Zn–O thin films can be prepared using the method of single-step radio frequency (RF) sputter deposition, applying a powder target containing indium oxide, gallium oxide, and zinc oxide. The In–Ga–Zn–O thin films were prepared on Si substrates, and the deposition rate depended on the target composition. In these plasma processes, electron density and temperature were essentially independent of target composition. The prepared films were very smooth with a root-mean-square roughness of less than 10 nm. The crystallinity of the ZnO peak was observed in all the films; whereas the In and Ga peaks were not observed in the films prepared. The X-ray photoelectron spectroscopy of the films also revealed that the elemental concentration ratio of In–Ga–Zn–O thin films could be prepared using one target, and that can be easily controlled by ratios in the In2O3/Ga2O3/ZnO composition in the powder target. The transmittances were > 75% at 800 nm for all the target mixtures, and increased with increasing In2O3 in the powder target.
Rocznik
Strony
555--563
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
  • Graduate School of Engineering Sojo University Ikeda Nishi-ku Kumamoto City, Japan
  • Department of Electrical and Electronic Engineering, National Institute of Technology, Sasebo College Okishin-machi, Sasebo City, Nagasaki Pref., Japan
  • Graduate School of Engineering Sojo University Ikeda Nishi-ku Kumamoto City, Japan
Bibliografia
  • [1] Nomura K., Ohta H., Ueda K., Kamiya T., Hirano M., Hosono H., Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor, Science, vol. 300, pp. 1269–1272 (2003), DOI: 10.1126/science.1083212.
  • [2] Nomura K., Ohta H., Takagi A., Kamiya T., Hirano M., Hosono H., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature, vol. 432, pp. 488–492 (2004), DOI: 10.1038/nature03090.
  • [3] Behrish R., Eckstein W., Sputtering by Particle Bombardment, Experiments and Computer Calculations from Threshold to MeV Energies, Springer, ISBN: 978-3540445005 (2007).
  • [4] Carter G., Colligan J.S., Ion Bombardment of Solids, American Elsevier (1968).
  • [5] Maissel L.I., Applications of Sputtering to the Deposition of Films, in Handbook of Thin Film Technology, McGraw-Hill (1970).
  • [6] Wehner G. K., Anderson G. S., The Nature of Physical Sputtering, Handbook of Thin Film Technology, McGraw-Hill (1970).
  • [7] Nastasi M., Mayer J., Hirvonen J. K., Ion-Solid Interactions: Fundamentals and Applications, Cambridge Solid State Science Series, Cambridge University Press, ISBN: 9780521616065 (2004).
  • [8] Liu Y., Sun B., Shu Y., Zeng X., Zhu J., Yi J., He J., Preparation of superior IGZO ceramics by two-step sintering for application in IGZO thin film fabrication, Journal of Materials Research and Technology, vol. 9, pp. 5331–5342 (2020), DOI: 10.1016/j.jmrt.2020.03.059.
  • [9] Baragiola R.A., Sputtering: survey of observations and derived principles, Philosophical Transactions A, vol. 362, pp. 29–53 (2004), DOI: 10.1098/rsta.2003.1301.
  • [10] Smentkowski V.S., Trends in sputtering, Progress in Surface Science, vol. 64 pp. 1–58 (2000), DOI: 10.1016/ S0079-6816(99)00021-0.
  • [11] Song J., Park J., Kim H., Heo Y., Lee J., Kim J., Transparent amorphous indium zinc oxide thin- film transistors fabricated at room temperature, Applied Physics Letters, vol. 90, p. 022106 (2007), DOI: 10.1063/1.2430917.
  • [12] Itagaki N., Iwasaki T., Kumomi H., Den T., Nomura K., Kamiya T., Hosono H., Zn–In–O based thin-film transistors: Compositional dependence, Physica Status Solidi A, vol. 205, pp. 1915–1919 (2008), DOI: 10.1002/pssa.200778909.
  • [13] Fujiyama H., Inner coating of long-narrow tube by plasma sputtering, Surface and Coatings Technology, vol. 131 pp. 278–283 (2000), DOI: 10.1016/S0257-8972(00)00801-X.
  • [14] Morisaki E., Fujiyama H., Development of a transported coaxial ECR plasma source for inner coating of metallic tubes, Surface and Coatings Technology, vol. 98, pp. 834–838 (1998), DOI: 10.1016/S0257-8972(97)00305-8.
  • [15] Kawasaki H., Ohshima T., Yagyu Y., Ihara T., Shinohara M., Suda Y., Preparation of metal doped SiO2 films by magnetron sputtering deposition using metal oxide mixture powder target, Transactions on the Materials Research Society of Japan, vol. 43, no. 1, pp. 27–30 (2018), DOI: 10.14723/tmrsj.43.27.
  • [16] Gao X.T., Nagaie Y., Kawasaki H., Aoqui S., Munagata M., Ohkoshi M., Perpendicular magneticanisotropy in 4-layer Ni/Pt thin films, Journal of the Magnetics Society of Japan, vol. 31, pp. 81–84 (2007), DOI: 10.3379/jmsjmag.31.81.
  • [17] Timpheev A. A., Grishin P. A., Munakata M., The influence of intergranular interaction on the magnetization of the ensemble of oriented Stoner–Wohlfarth nanoparticles, Journal of Applied Physics, vol. 105, p. 083905 (2009), DOI: 10.1063/1.3098227.
  • [18] Guillon O., Gonzalez-Julian J., Dargatz B., Kessel T., Schierning G., Räthel J., Herrmann M., Field-Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments, Advanced Engineering Materials, vol. 16, no. 7, pp. 830–849 (2014), DOI: 10.1002/adem.201300409.
  • [19] Hase T., Sakuma T., Miyasaka Y., Hirata K., Hosokawa N., Preparation of Pb(Zr, Ti)O3. Thin Films by Multi-Target Sputtering, Japanese Journal of Applied Physics, vol. 32, p. 4061 (1993), DOI: 10.1143/JJAP.32.4061.
  • [20] Kawasaki H., Taniyama D., Takeichi S., Ohshima T., Yagyu Y., Ihara T., Tanaka Y., Suda Y., Characteristics of plasma parameters in sputtering deposition using a powder target, Journal of Physics: Conference Series, vol. 518, p. 012003 (2014), DOI: 10.1088/1742-6596/518/1/012003.
  • [21] Dzibrou D., Grishin A. M., Kawasaki H., Pulsed laser deposited TiO2 films: Tailoring optical properties, Thin Solid Films, vol. 516, pp. 8697–8701 (2008), DOI: 10.1016/j.tsf.2008.05.010.
  • [22] Grishin A. M., Khartsev S. I., Kawasaki H., 980nm Bi3Fe5012 / Sm3Ga5012 magneto-optical photonic crystal, Applied Physics Letters, vol. 90, p. 191113 (2007), DOI: 10.1063/1.2737933.
  • [23] Kawasaki H., Ohshima T., Yagyu Y., Ihara T., Mitsuhashi K., Nishiguchi H., Suda Y., Preparation of functional thin films with elemental gradient by sputtering with mixed powder targets, Japanese Journal of Applied Physics, vol. 61, p. SA1019 (2021), DOI: 10.35848/1347-4065/ac1488.
  • [24] Kawasaki H., Nishiguchi H., Ohshima T., Yagyu Y., Ihara T., Preparation of Ni-doped stainless steel thin films on metal to prevent hydrogen entry via sputter deposition with a powder target, vol. 60, p. SAAB10 (2020), DOI: 10.35848/1347-4065/abba10.
  • [25] Kawasaki H., Ohshima T., Yagyu Y., Ihara T., Suda Y., Preparation of Multielements Mixture Thin Film by One-Step Process Sputtering Deposition Using Mixture Powder Target, IEEE Transactions on Plasma Science, vol. 49, no. 1, pp. 48–52 (2020), DOI: 10.1109/TPS.2020.3025306.
  • [26] Kawasaki H., Ohshima T., Yagyu Y., Ihara T., Shinohara M., Suda Y., Preparation of Sn doped SiO2 thin films by magnetron sputtering deposition using metal and metal oxide powder targets, Japanese Journal of Applied Physics, vol. 58, p. SAAD04 (2018), DOI: 10.7567/1347-4065/aaea67.
  • [27] Kawasaki H., Ohshima T., Yagyu Y., Ihara T., Shinohara M., Suda Y., Preparation of two-dimensional thin films by backside irradiation pulsed laser deposition method using powder target, Japanese Journal of Applied Physics, vol. 59, p. SAAC01 (2020), DOI: 10.7567/1347-4065/ab4e76.
  • [28] Kawasaki H., Ohshima T., Yagyu Y., Ihara T., Yamauchi M., Suda Y., Thin-film preparation by back-surface irradiation pulsed laser deposition using metal powder targets, Japanese Journal of Applied Physics, vol. 56, p. 01AB06 (2016), DOI: 10.7567/JJAP.56.01AB06.
  • [29] Ohshima T., Maeda T., Tanaka Y., Kawasaki H., Yagyu Y., Ihara T., Suda Y., Sputtering deposition of Al-doped zinc oxide thin films using mixed powder targets, Japanese Journal of Applied Physics, vol. 55, p. 01AA08 (2015), DOI: 10.7567/JJAP.55.01AA08.
  • [30] Kawasaki H., Ohshima T., Yagyu Y., Ihara T., Tanaka Y., Suda Y., Preparation of mixed bismuth and iron thin films by pulsed laser deposition using powder targets, Japanese Journal of Applied Physics, vol. 55, p. 01AA14 (2015), DOI: 10.7567/JJAP.55.01AA14.
  • [31] Kawasaki H., Ohshima T., Yagyu Y., Ihara T., Yamauchi M., Suda Y., Optical Study of Laser Ablation Plasma Irradiation for the Bacteria Sterilization using Metal Oxide Target, Transactions of the Materials Research Society of Japan, vol. 41, pp. 205–208 (2016), DOI: 10.14723/tmrsj.41.205.
  • [32] Nakano K., PVP-Vol302, Composites for the pressure vessel industry, Book No. H00 965, ASME, pp. 283–289 (1995).
  • [33] Kawasaki H., Nishiguchi H., Furutani T., Ohshima T., Yagyu Y., Ihara T., Shinohara M., Suda Y., Coating of inner surface of cylindrical pipe for hydrogen entry prevention using plasma process, Japanese Journal of Applied Physics, vol. 57, p. 01AB02 (2018), DOI: 10.7567/JJAP.57.01AB02.
  • [34] Nishiguchi H., Ohshima T., Kawasaki H., Fukuda T., Strength of plasma coating and effect of a plasma coating on hydrogen entry, Japanese Journal of Applied Physics, vol. 55, p. 01AF05 (2016), DOI: 10.7567/JJAP.55.01AF05.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d3d6809-b850-41a8-8963-c7960d182350
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.