PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Artificial Magnetic Conductor-based Millimeter Wave Microstrip Patch Antenna for Gain Enhancement

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a small (20 × 20 × 2.4 mm) loaded microstrip patch antenna (MPA) with an asymmetric artificial magnetic conductor (AMC) as a ground plane is designed for millimeter wave applications. Two AMC structures are proposed; one has the property of a 0 ◦ reflection phase around 28.4 GHz, with a symmetric geometry, which makes the reflection phase insensitive to variations in both polarization and incident angle. This symmetric AMC structure ensures angular stability which is considered as a major requirement when periodic structures are used as antenna ground planes. The other structure is characterized by an asymmetric geometry and shows an interesting behavior around 28.6 GHz, where a discontinuity in the reflection phase appeared due to the fact that surface impedance nature changed from purely capacitive to purely inductive. This paper studies the effects of the two proposed AMC structures on the performance of MPAs, by using an array of 8 × 8 unit cell elements as an artificial ground plane. Simulation results show that an MPA with a symmetric AMC ground plane offers better impedance matching and a wider bandwidth. Compared with conventional MPAs, gain is enhanced and directivity is improved as well. As far as an MPA with an asymmetric AMC ground plane is concerned, its performance in terms of gain and directivity is higher than that of the conventional solution.
Rocznik
Tom
Strony
56--63
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • University of Mohamed Boudiaf M'sila, BP.166, Route Ichebilia, M'sila, Algeria
  • University of Mohamed Boudiaf M'sila, BP.166, Route Ichebilia, M'sila, Algeria
  • University of Mohamed Boudiaf M'sila, BP.166, Route Ichebilia, M'sila, Algeria
Bibliografia
  • [1] K. Hamaguchi et al, „Development of millimeter-wave video transmission system-system design and performance for indoor BS signals transmission", in Proc. 2001 Asia-Pacific Microwave Conf., vol. 2, Asia-Pacific, Taipei, Taiwan, 2001, pp. 492-497 (DOI: 10.1109/APMC.2001.985420).
  • [2] F. K. Schwering, „Millimeter wave antennas", in Proc. IEEE, vol. 80, no. 1, 1992, pp. 92-102 (DOI: 10.1109/5.119569).
  • [3] A. Elboushi, O. M. Haraz, A. Sebak, and T. Denidni, „A new circularly polarized high gain DRA millimeter-wave antenna", in Proc. IEEE Antennas and Prop. Society Int. Symp., 2010, pp. 1-4 (DOI: 10.1109/APS.2010.5562140).
  • [4] B. T. P. Madhav, G. J. Devi, P. Lakshman, and T. Anilkumar, „A CPW-fed sigma-shaped MIMO antenna for Ka band and 5G communication applications", J. of Telecommun. and Inf. Technol., vol. 8, no. 4, pp. 97-106, 2018 (DOI: 10.26636/jtit.2018.123717).
  • [5] S. Agarwal and P. Gupta, „High gain linear 1£4 x-slotted micro strip patch antenna array for 5G mobile technology", J. of Telecommun. and Inf. Technol., vol. 1, pp. 50-55, 2020 (DOI: 10.26636/jtit.2020.137319).
  • [6] D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, „High-impedance electromagnetic surfaces with a forbidden frequency band", IEEE Trans. Microw. Theory Technol., vol. 47, no. 11, pp. 2059-2074, 1999 (DOI: 10.1109/22.798001).
  • [7] R. Coccioli, F.-R. Yang, K.-P. Ma, and T. Itoh, „Aperture-coupled patch antenna on UC-PBG substrate", IEEE Trans. Microw. Theory Technol., vol. 47, no. 11, pp. 2123-2130, 1999 (DOI: 10.1109/22.798008).
  • [8] H. Malekpoor and S. Jam, „Improved radiation performance of low profile printed slot antenna using wideband planar AMC surface", IEEE Trans. Antennas Propag., vol. 64, no. 11, pp. 4626-4638, 2016 (DOI: 10.1109/TAP.2016.2607761).
  • [9] A. P. Feresidis, G. Goussetis, Shenhong Wang, and J. C. Vardaxoglou, „Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas", IEEE Trans. Antennas Propag., vol. 53, no. 1, pp. 209-215, 2005 (DOI: 10.1109/TAP.2004.840528).
  • [10] M. A. Meriche, H. Attia, A. Messai, and T. A. Denidni, „Gain improvement of a wideband monopole antenna with novel artificial magnetic conductor", in Proc. 17th Int. Symp. on Antenna Technol.and Applied Electromagnetics (ANTEM), 2016, pp. 1-2 (DOI: 10.1109/ANTEM.2016.7550150).
  • [11] Y.-W. Zhong, G.-M. Yang, and L.-R. Zhong, „Gain enhancement of bow-tie antenna using fractal wideband artificial magnetic conductor ground", Electron. Lett., vol. 51, no. 4, pp. 315-317, 2015 (DOI: 10.1049/el.2014.4017).
  • [12] A. Ghosh, V. Kumar, G. Sen, and S. Das, „Gain enhancement of triple-band patch antenna by using triple-band artificial magnetic conductor", IET Microw. Antennas Amp Propag., vol. 12, no. 8, pp. 1400-1406, 2018 (DOI: 10.1049/iet-map.2017.0815).
  • [13] P. Yao, B. Zhang, J. Duan, and Q. Bai, „A novel low-scattering and wideband monopole antenna based on artificial magnetic conductor", J. Phys. Conf. Serv., vol. 887, no. 1, pp. 12-37, 2017 (DOI: 10.1088/1742-6596/887/1/012037).
  • [14] Y. Zheng, J. Gao, X. Cao, Z. Yuan, and H. Yang, „Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures", IEEE Antennas Wirel. Propag. Lett., vol. 14, pp. 1582-1585, 2015 (DOI: 10.1109/LAWP.2015.2413456).
  • [15] P. Yao, B. Zhang, and J. Duan, „A broadband artificial magnetic conductor reecting screen and application in microstrip antenna for radar cross-section reduction", IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 3, pp. 405-409, 2018 (DOI: 10.1109/LAWP.2018.2791662).
  • [16] D. Sang, Q. Chen, L. Ding, M. Guo, and Y. Fu, „Design of checkerboard AMC structure for wideband RCS reduction", IEEE Trans. Antennas Propag., vol. 67, no. 4, pp. 2604-2612, 2019 (DOI: 10.1109/TAP.2019.2891657).
  • [17] J. Zhu, S. Li, S. Liao, and Q. Xue, „Wideband Low-Profile Highly Isolated MIMO Antenna With Artificial Magnetic Conductor", IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 3, pp. 458-462, 2018 (DOI: 10.1109/LAWP.2018.2795018).
  • [18] S. Yan, P. J. Soh, and G. A. E. Vandenbosch, „Low-profile dual-band textile antenna with artificial magnetic conductor plane", IEEE Trans. Antennas Propag., vol. 62, no. 12, pp. 6487-6490, 2014 (DOI: 10.1109/TAP.2014.2359194).
  • [19] S. Lal, K. Subramanya, and R. Abhari, „Miniaturized EBG-backed textile microstrip patch antenna for Bluetooth wearable sensor applications", in Proc. IEEE Int. Symp. on Antennas and Propag. (AP-SURSI), 2016, pp. 285-286 (DOI: 10.1109/APS.2016.7695851).
  • [20] S. Zhu and R. Langley, „Dual-band wearable textile antenna on an EBG substrate", IEEE Trans. Antennas Propag., vol. 57, no. 4, pp. 926-935, 2009 (DOI: 10.1109/TAP.2009.2014527).
  • [21] R. P. Dwivedi, Md. Z. Khan, and U. K. Kommuri, „UWB circular cross slot AMC design for radiation improvement of UWB antenna", AEU-Int. J. Electron. Commun., vol. 117, 2020 (DOI: 10.1016/j.aeue.2020.153092).
  • [22] M. Xue, W. Wan, Q. Wang, and L. Cao, „Wideband low-profile Kaband microstrip antenna with low cross polarization using asymmetry AMC structure", in Proc. IEEE 69th Electronic Components and Technol. Conf. (ECTC), 2019, pp. 2318-2323 (DOI: 10.1109/ECTC.2019.00319).
  • [23] D. F. Sievenpiper, „High-Impedance Electromagnetic Surfaces", Ph.D. Thesis, University of California, Los Angeles, California, 1999 [Online]. Available: http://optoelectronics.eecs.berkeley.edu/ThesisDan.pdf.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d31eeab-924c-4c26-99a1-a53d8e5869ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.