PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Performance comparison of different aerodynamic shapes for autonomous underwater vehicles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A brief review of the existing autonomous underwater vehicles, their types, design, movement abilities and missions is presented. It is shown, the shape optimization design and enhancement of their efficiency is the main problem for further development of multipurpose glider technologies. A comparative study of aerodynamic performance of three different shape designs (the airfoil NACA0022 based (I), flattened ellipsoidal (II) and cigar-type (III) bodies of the same volumes) has been carried out. Geometrical modelling, meshing and computational fluid dynamics (CFD) simulations have been carried out with AnSys15.0. The pathlines and wall shear stress distributions have been computed to understand the advantages and disadvantages of each shape. The lift and drag coefficients, aerodynamic quality, power index and pitching moment have been computed. The higher efficiency of the shape I/shape II at higher/lower angles of attack (greater than 20o and less than 20o) has been found. The shape III develops high speeds at the same angles of attack and has higher manoeuvrability at relatively low aerodynamic quality. The comparative analysis of the flow capabilities of studied autonomous undersea vehicles proposes some design improvement for increasing their energy efficiency and flow stability.
Rocznik
Strony
171--189
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • V.N. Karazin Kharkov National University, Kharkiv, Ukraine
  • Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, Warsaw, Poland
Bibliografia
  • [1] F. Muttin. Umbilical deployment modeling for tethered UAV detecting oil pollution from a ship. Applied Ocean Research, 33(4):332–343, 2011. doi: 10.1016/j.apor.2011.06.004.
  • [2] D. Meyer. Glider Technology for ocean observations: a review. Ocean Science Discussions, 1–26, 2016. doi: 10.5194/os-2016-40.
  • [3] S. Ruiz, B. Garau, M. Martinez-Ledesma, B. Casas, A. Pascual, G. Vizono, J. Bouffard, E. Heslop, A. Alvarez, P. Testor, and J. Tintoré. New technologies for marine research: five years of glider activities at IMEDEA. Scientia Marina, 76:261–270, 2012. doi: 10.3989/scimar.03622.19L.
  • [4] M. C. Domingo. An overview of the internet of underwater things. Journal of Network and Computer Applications, 35:1879–1890, 2012. doi: 10.1016/j.jnca.2012.07.012.
  • [5] J. Yuh, G. Marani, and D.R. Blidberg. Applications of marine robotic vehicles. Intelligent Service Robotics, 4:221–231, 2011. doi: 10.1007/s11370-011-0096-5.
  • [6] E. Gray. The Devil’s Device: Robert Whitehead and the history of the Torpedo. Naval Institute Press, Annapolis, 1991.
  • [7] N. D. Kraus. Wave glider dynamic modeling, parameter identification and simulation. PhD Thesis, University of Hawaii, 2012.
  • [8] J. G. Graver. Underwater gliders: dynamics, control and design. PhD Thesis, Princeton University, NJ 08544, 2005.
  • [9] H. Stommel. The Slocum Mission. Oceanography, 2(1):22–25, 1989. doi: 10.5670/ oceanog.1989.26.
  • [10] J. Sherman, R. E. Davis, W. B. Owens, and J. Valdes. The autonomous underwater glider “Spray”. IEEE Journal of Oceanic Engineering, 26(4):437–446, 2001. doi: 10.1109/48.972076.
  • [11] C. C. Eriksen, T. J. Osse, R. D. Light, T. Wen, T. W. Lehmann, P. L. Sabin, J. W. Ballard, and A. M. Chiodi. Seaglider: a long range autonomous underwater vehicle for oceanographic research. IEEE Journal on Oceanic Engineering, 26(4):424–436, 2001. doi: 10.1109/48.972073.
  • [12] M. Y. Javaid, M. Ovinis, T. Nagarajan, and F.B.M. Hashim. Underwater gliders: a review. MATEC Web of Conferences, 13:02020–5, 2014. doi: 10.1051/matecconf/20141302020.
  • [13] D. C. Webb, P. J. Simonetti, and C. P. Jones. SLOCUM, an underwater glider propelled by environmental energy. IEEE Journal of Oceanic Engineering, 26(4):447–452, 2001. doi: 10.1109/48.972077.
  • [14] T. B. Curtin, J. G. Bellingham, J. Catipovic, and D. Webb. Autonomous oceanographic sampling networks. Oceanography, 6(3):86–94, 1993. doi: 10.5670/oceanog.1993.03.
  • [15] K. Kawaguchi, T. Ura, M. Oride, and T. Sakamaki. Development of shuttle type AUVALBAC and sea trials for oceanographic measurement. Journal of the Society of Naval Architects of Japan, 178:657–665, 1995 (in Japanese). doi: 10.2534/jjasnaoe1968.1995.178_657.
  • [16] S. Wood. Autonomous underwater gliders. In A. V. Inzartsev, Editor, Underwater Vehicles, chapter 26, pages 505–530, IntechOpen, 2009. doi: 10.5772/6718.
  • [17] D. Tsering. China deep-sea exploration: intention and concerns. Maritime Affairs: Journal of the National Maritime Foundation of India, 13(1):91–98, 2017. doi: 10.1080/09733159.2017.1326570.
  • [18] Ø. Hasvold, N.J. Størkersen, S. Forseth, and T. Lian. Power sources for autonomous underwater vehicles. Journal of Power Sources, 162(2):935–942, 2006. doi: 10.1016/j.jpowsour.2005.07.021.
  • [19] X. Wang, J. Shang, Z. Luo, L. Tang, X. Zhang, and J. Li. Reviews of power systems and environmental energy conversion for unmanned underwater vehicles. Renewable and Sustainable Energy Reviews, 16(4):1958–1970, 2012. doi: 10.1016/j.rser.2011.12.016.
  • [20] S. Willcox, J. Manley, and S. Wiggins. The wave glider, an energy-harvesting autonomous surface vessel. Sea Technology, 50(11):29–32, 2009.
  • [21] T. B. Curtin, D. M. Crimmins, J. Curcio, M. Benjamin, and C. Roper. Autonomous underwater vehicles: trends and transformations. Marine Technology Society Journal, 39(3):65–75, 2005. doi: 10.4031/002533205787442521.
  • [22] S. Wang, C. Xie, Y. Wang, L. Zhang, W. Jie, and S.J. Hu. Harvesting of PEM fuel cell heat energy for a thermal engine in an underwater glider. Journal of Power Sources, 169(2):338– 346, 2007. doi: 10.1016/j.jpowsour.2007.03.043.
  • [23] K. Isa, M. R. Arshad, and S. Ishak. A hybrid-riven underwater glider model, hydrodynamics estimation, and analysis of the motion control. Ocean Engineering, 81:111–129, 2014. doi: 10.1016/j.oceaneng.2014.02.002.
  • [24] M. S. Stewart and J. Pavlos. A means to networked persistent undersea surveillance. In Submarine Technology Symposium STS, pages 2–38, 2006.
  • [25] APL. The Applied Physics Laboratory Biennial 2007 Report, College of Ocean and Fishery Sciences, University of Washington, 2007.
  • [26] T. Praczyk and P. Szymak. Decision system for a team of autonomous underwater vehicles – Preliminary report. Neurocomputing, 74(17):3323–3334, 2011. doi: 10.1016/j.neucom.2011.05.013.
  • [27] M.Y. Javaid, M. Ovinis, F.B.M. Hashim, A. Maimun, Y.M. Ahmed, and B. Ullah. Effect of wing form on the hydrodynamic characteristics and dynamic stability of an underwater glider. International Journal of Naval Architecture and Ocean Engineering, 9(4):382–389, 2017. doi: 10.1016/j.ijnaoe.2016.09.010.
  • [28] Y. Singh, S. K. Bhattacharyya, and V. G. Idichandy. CFD approach to modelling, hydrodynamic analysis and motion characteristics of a laboratory underwater glider with experimental results. Journal of Ocean Engineering and Science, 2(2):90–119, 2017. doi: 10.1016/j.joes.2017.03.003.
  • [29] C. Sun, B. Song, P. Wang, and X. Wang. Shape optimization of blended-wing-body underwater glider by using gliding range as the optimization target. International Journal of Naval Architecture and Ocean Engineering, 9(6):693–704, 2017. doi: 10.1016/j.ijnaoe.2016.12.003.
  • [30] S. Zhang, J. Yu, A. Zhang, and F. Zhang. Spiraling motion of underwater gliders: Modeling, analysis, and experimental results. Ocean Engineering, 60:1–13, 2013. doi: 10.1016/j.oceaneng.2012.12.023.
  • [31] D.C. Seo and C.D. Williams. CFD Predictions of drag force for a Slocum ocean glider. Technical Report no. TR-2010-07. NRC Canada, 2010. doi: 10.4224/17210700.
  • [32] K. Alam, T. Ray, and S.G. Anavatti. Design and construction of an autonomous underwater vehicle. Neurocomputing, 142:16–29, 2014. doi: 10.1016/j.neucom.2013.12.055.
  • [33] Z. Wang, J. Yu, A. Zhang, Y. Wang, and W. Zhao. Parametric geometric model and hydrodynamic shape optimization of a flying-wing structure underwater glider. China Ocean Engineering, 31(6):709–715, 2017. doi: 10.1007/s13344-017-0081-7.
  • [34] D. Gassier, J. Rebollo, and R. Dumonteil. Implementing a low-cost long-range unmanned underwater vehicle: the SeaDiver Glider. Technical Report, Calhoun Institutional Archive of the Naval Postgraduate School, Monterey, California, 2007.
  • [35] D. Leandri, V. Nikishov, J. P. Frachet, T. Mathia, Y. Rudnyev, and E. Philippova. Undersea gliders for long-range applications. In O. Limarchenko, editor, Hydrodynamics of Moving Objects. Proceedings of the International Workshop, pages 142–153, Kiev, 2013.
  • [36] T. Melin. Parametric Airfoil Catalog. Part II. Göttingen 673 to YS930: An Aerodynamic and Geometric Comparison Between Parametrized and Point Cloud Airfoils. Linköping University Electronic Press, 2013.
  • [37] R. E. Sheldahl, and P.C. Klimas. Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines. Technical Report, Sandia National Laboratories, 1981. doi: 10.2172/6548367.
  • [38] W. Shyy, Y. Lian, J. Tang, D. Viieru, and H. Liu. Aerodynamics of Low Reynolds Number Flyers. Cambridge University Press, 2007.
  • [39] R.M. Hubbard. Hydrodynamics technology for an Advanced Expendable Mobile Target (AEMT). Technical Report no. 8013, Applied Physics Laboratory, University of Washington,1980.
  • [40] AnSys Fluent User’s Guide. Release 15.0. SAS IP, Inc., 2013.
  • [41] C. Galiński, A. Dziubiński, and A. Sieradzki. Performance comparison of the optimized inverted joined wing airplane concept and classical configuration airplanes. Archive of Mechanical Engineering, 63(3):455–470, 2016. doi: 10.1515/meceng-2016-0026.
  • [42] H. Schlichting. Boundary-Layer Theory. 7th edition, McGraw-Hill, 1979.
  • [43] M. Grossrubatscher. Pilot’s Reference Guide. 10th edition. PilotsReference.com, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d2f9e71-9442-4754-9125-c1e7699f9ada
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.