PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Control of modular conveyor and automated handling devices interconnection

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper focuses on modular conveyors, mainly dedicated for the transport of parcel goods of various properties. Accent will also be put to their use in processes where the belt’s resistance to higher temperatures or to mechanical damage is required. The solution is aimed on the use for installation in larger transport units, production as well assembly lines. The proposal of the conveyor design allows to handle different line sections (bends, broken sections, etc.) using a single drive. The conveyor track will be solved with aim to the transport of goods (products) by means of automated trolleys. A proposal for the synchronization of the conveyor track with an automated handling device will be presented, which will ensure the final phase of the production chain, the relocation of production to the warehouse of finished products. The authors will focus on the calculation of subsequent intervals for automated means of handling as well on determining the capacity of the conveyor track.
Twórcy
  • College of Logistics (Vysoká škola logistiky, o.p.s.), Palackého 1381/25, 750 02 Přerov, Czech Republic
  • Department of Railway Transport, Faculty of Operation and Economics of Transport and Communications, University of Zilina, Univerzitná 1, 010 26, Žilina, Slovakia
  • Department of Railway Transport, Faculty of Operation and Economics of Transport and Communications, University of Zilina, Univerzitná 1, 010 26, Žilina, Slovakia
autor
  • Railway of Slovak Republic, 1. mája 34, 010 01, Žilina, Slovakia
Bibliografia
  • 1. Wurman P.R., D’Andrea R. and Mountz, M.. Coordinating hundreds of cooperative, autonomous vehicles in warehouses, AI magazine 1 (29), 2008, 1-19.
  • 2. Sabattini L., Digani V., Secchi C., Cotena G., Ronzoni D., Foppoli M. and Oleari F. Technological roadmap to boost the introduction of AGVs in industrial applications, In IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania 2013, 203-208.
  • 3. Vasiljević G., Miklić D., Draganjac I., Kovačić Z. and Lista P. High-accuracy vehicle localization for autonomous warehousing. Journal of Robotics and Computer-Integrated Manufacturing. C (42), 2016, 1-16.
  • 4. Zheng K., Tang D., Gu W. and Dai M. Distributed control of multi-AGV system based on regional control model. Production Engineering; 7 (4), 433–441.
  • 5. Möhring R.H., Köhler E., Gawrilow E. and Stenzel B. Conflict-free Real-time AGV Routing. Operations Research Proceedings. Vol. 2004, Springer, Berlin, Heidelberg 2005, 18–24.
  • 6. Ullrich G. Automated Guided Vehicle Systems. Springer, 2015.
  • 7. González D., Romero L., Espinosa M. D. and Domínguez M. An optimization design proposal of automated guided vehicles for mixed type transportation in hospital environments. PLoS ONE 12 (5), 2017
  • 8. Buchholz, J. Clausen, U. and Vastag, A. Handbuch der Verkehrslogistik. Springer 1998.
  • 9. Scholz-Reiter B., Windt K. and Freitag M. Autonomous Logistic Processes – New Demands and First Approaches. Monostori, L. Proc of 37th CIRP International Seminar on Manufacturing Systems. Hungarian Academy of Science, Budapest, Hungary, 2004, 357-362.
  • 10. Scholz-Reiter B., Kolditz J. and Hildebrandt T. Engineering autonomously controlled logistic systems. International Journal of Production Research, 47 (6), 1449-1468
  • 11. Pastor O. and Tuzar A. Theory of Transport Systems. Aspi Wotlters Kluwer, 2007.
  • 12. Jasaň, V. et al. Theory of transport and handling equipment. Alfa, 1989.
  • 13. Kuptcova A., Prusa P., Fedorko G. and Molnar V. Data mining workspace as an optimization prediction technique for solving transport problems. Transport Problems 11, 2016, 21–31.
  • 14. Molnár V., Fedorko G., Andrejiová M., Grinčová A. and Michalik P. Online monitoring of a pipe conveyor. Part I: Measurement and analysis of selected operational parameters. Measurement 94, 2016, 364–371.
  • 15. Bode W. and Rüdiger W. Preuss: Intralogistik in der Praxis. Wirtschafts Verlag W. V. GmbH, 2004.
  • 16. Fedorko G., Husakova N. and Dudas G. Design of allocation of new technological equipment within the frame of production process in company Getrag Ford Transmissions Slovakia, s.r.o. Acta Montanistica Slovaca 15, 2010, 14-22.
  • 17. Kampf R., Stopka O., Bartuška L. and Zeman K. Circulation of vehicles asan important parameter of public transport efficiency. Proc. of the 19th International Scientific Conference on Transport Means, Kaunas University of Technology, 2015, 143-146.
  • 18. Kendra M., Babin M. and Barta D. Changes of the infrastructure and operation parameters of a railway line and their impact to the track capacity and the volume of transported goods. Procedia - social and behavioural sciences, 48, 2012, 743-752.
  • 19. Žuľová L., Grega R., Krajňák J., Fedorko G. and Molnár V. Optimization of noisiness of mechanical system by using a pneumatic tuner during a failure of piston machine. Engineering Failure Analysis 79, 2017, 845–851.
  • 20. Lonkwic P., Różyło P. and Dębski H. Numerical and experimental analysis of the progressive gear body with the use of finite-element method. Eksploatacja i Niezawodnosc – Maintenance and Reliability 17, 2015, 544–550.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d2bbf0d-2c45-4711-83b4-70f91cad28dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.